Luacháil
-\frac{8xa^{2}b^{4}}{9}+С
Difreálaigh w.r.t. x
-\frac{8a^{2}b^{4}}{9}
Roinn
Cóipeáladh go dtí an ghearrthaisce
\int \left(-\frac{1}{3}ab^{2}\right)^{2}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Méadaigh a agus a chun a^{2} a fháil.
\int \left(-\frac{1}{3}\right)^{2}a^{2}\left(b^{2}\right)^{2}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Fairsingigh \left(-\frac{1}{3}ab^{2}\right)^{2}
\int \left(-\frac{1}{3}\right)^{2}a^{2}b^{4}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 2 agus 2 chun 4 a bhaint amach.
\int \frac{1}{9}a^{2}b^{4}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Ríomh cumhacht -\frac{1}{3} de 2 agus faigh \frac{1}{9}.
\int \frac{1}{9}a^{2}b^{4}-\left(-6a^{2}b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Méadaigh 2 agus -3 chun -6 a fháil.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}\left(a^{2}\right)^{2}\left(b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Fairsingigh \left(-6a^{2}b^{2}\right)^{2}
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}a^{4}\left(b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 2 agus 2 chun 4 a bhaint amach.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}a^{4}b^{4}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 2 agus 2 chun 4 a bhaint amach.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Ríomh cumhacht -6 de 2 agus faigh 36.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(2^{2}a^{2}\left(b^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Fairsingigh \left(2ab^{2}\right)^{2}
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(2^{2}a^{2}b^{4}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 2 agus 2 chun 4 a bhaint amach.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(4a^{2}b^{4}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Ríomh cumhacht 2 de 2 agus faigh 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(-36a^{2}b^{4}a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Méadaigh 4 agus -9 chun -36 a fháil.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(-36a^{4}b^{4}+a^{2}b^{4}\right)\mathrm{d}x
Chun cumhachtaí den bhonn céanna a iolrú, suimigh a n-easpónaint. Suimigh 2 agus 2 chun 4 a bhaint amach.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}+36a^{4}b^{4}-a^{2}b^{4}\mathrm{d}x
Chun an mhalairt ar -36a^{4}b^{4}+a^{2}b^{4} a aimsiú, aimsigh an mhalairt ar gach téarma.
\int \frac{1}{9}a^{2}b^{4}-a^{2}b^{4}\mathrm{d}x
Comhcheangail -36a^{4}b^{4} agus 36a^{4}b^{4} chun 0 a fháil.
\int -\frac{8}{9}a^{2}b^{4}\mathrm{d}x
Comhcheangail \frac{1}{9}a^{2}b^{4} agus -a^{2}b^{4} chun -\frac{8}{9}a^{2}b^{4} a fháil.
\left(-\frac{8a^{2}b^{4}}{9}\right)x
Aimsigh suimeálaithe do -\frac{8a^{2}b^{4}}{9} ag baint úsáid as an tábla do suimeálaithe coitianta riail\int a\mathrm{d}x=ax.
-\frac{8a^{2}b^{4}x}{9}
Simpligh.
-\frac{8a^{2}b^{4}x}{9}+С
Má tá F\left(x\right) mar frithdhíorthach do f\left(x\right), beidh tacar do frithdhíorthach uile do f\left(x\right) a thabhairt ag F\left(x\right)+C. Mar sin de, cur an comhtháthú leanúnach C\in \mathrm{R} don toradh.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}