Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. t
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\int \frac{4}{\sqrt[5]{t}}\mathrm{d}t+\int \frac{3}{t^{6}}\mathrm{d}t
Measc an tsuim téarma fá téarma.
4\int \frac{1}{\sqrt[5]{t}}\mathrm{d}t+3\int \frac{1}{t^{6}}\mathrm{d}t
Fág an leanúnach sna téarmaí as an áireamh.
5t^{\frac{4}{5}}+3\int \frac{1}{t^{6}}\mathrm{d}t
Athscríobh \frac{1}{\sqrt[5]{t}} mar t^{-\frac{1}{5}}. Ó \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int t^{-\frac{1}{5}}\mathrm{d}t le \frac{t^{\frac{4}{5}}}{\frac{4}{5}}. Simpligh. Méadaigh 4 faoi \frac{5t^{\frac{4}{5}}}{4}.
5t^{\frac{4}{5}}-\frac{\frac{3}{t^{5}}}{5}
Ó \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int \frac{1}{t^{6}}\mathrm{d}t le -\frac{1}{5t^{5}}. Méadaigh 3 faoi -\frac{1}{5t^{5}}.
5t^{\frac{4}{5}}-\frac{3}{5t^{5}}
Simpligh.
5t^{\frac{4}{5}}-\frac{3}{5t^{5}}+С
Má tá F\left(t\right) mar frithdhíorthach do f\left(t\right), beidh tacar do frithdhíorthach uile do f\left(t\right) a thabhairt ag F\left(t\right)+C. Mar sin de, cur an comhtháthú leanúnach C\in \mathrm{R} don toradh.