Luacháil
6t^{\frac{2}{3}}-\frac{3}{5t^{5}}+С
Difreálaigh w.r.t. t
\frac{4}{\sqrt[3]{t}}+\frac{3}{t^{6}}
Tráth na gCeist
Integration
5 fadhbanna cosúil le:
\int ( \frac { 4 } { \sqrt[ 3 ] { t } } + \frac { 3 } { t ^ { 6 } } ) d t
Roinn
Cóipeáladh go dtí an ghearrthaisce
\int \frac{4}{\sqrt[3]{t}}\mathrm{d}t+\int \frac{3}{t^{6}}\mathrm{d}t
Measc an tsuim téarma fá téarma.
4\int \frac{1}{\sqrt[3]{t}}\mathrm{d}t+3\int \frac{1}{t^{6}}\mathrm{d}t
Fág an leanúnach sna téarmaí as an áireamh.
6t^{\frac{2}{3}}+3\int \frac{1}{t^{6}}\mathrm{d}t
Athscríobh \frac{1}{\sqrt[3]{t}} mar t^{-\frac{1}{3}}. Ó \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int t^{-\frac{1}{3}}\mathrm{d}t le \frac{t^{\frac{2}{3}}}{\frac{2}{3}}. Simpligh. Méadaigh 4 faoi \frac{3t^{\frac{2}{3}}}{2}.
6t^{\frac{2}{3}}-\frac{\frac{3}{t^{5}}}{5}
Ó \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int \frac{1}{t^{6}}\mathrm{d}t le -\frac{1}{5t^{5}}. Méadaigh 3 faoi -\frac{1}{5t^{5}}.
6t^{\frac{2}{3}}-\frac{3}{5t^{5}}
Simpligh.
6t^{\frac{2}{3}}-\frac{3}{5t^{5}}+С
Má tá F\left(t\right) mar frithdhíorthach do f\left(t\right), beidh tacar do frithdhíorthach uile do f\left(t\right) a thabhairt ag F\left(t\right)+C. Mar sin de, cur an comhtháthú leanúnach C\in \mathrm{R} don toradh.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}