Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}-\frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x^{2}-x+1 agus x+1 ná \left(x+1\right)\left(x^{2}-x+1\right). Méadaigh \frac{x-2}{x^{2}-x+1} faoi \frac{x+1}{x+1}. Méadaigh \frac{1}{x+1} faoi \frac{x^{2}-x+1}{x^{2}-x+1}.
\frac{\left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Tá an t-ainmneoir céanna ag \frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)} agus \frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x^{2}+x-2x-2-x^{2}+x-1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Déan iolrúcháin in \left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right).
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Cumaisc téarmaí comhchosúla in: x^{2}+x-2x-2-x^{2}+x-1.
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Fachtóirigh x^{3}+1.
\frac{-3+x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Tá an t-ainmneoir céanna ag \frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)} agus \frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}
Cumaisc téarmaí comhchosúla in: -3+x^{2}+x+3.
\frac{x\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}.
\frac{x}{x^{2}-x+1}
Cealaigh x+1 mar uimhreoir agus ainmneoir.
\frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}-\frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x^{2}-x+1 agus x+1 ná \left(x+1\right)\left(x^{2}-x+1\right). Méadaigh \frac{x-2}{x^{2}-x+1} faoi \frac{x+1}{x+1}. Méadaigh \frac{1}{x+1} faoi \frac{x^{2}-x+1}{x^{2}-x+1}.
\frac{\left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Tá an t-ainmneoir céanna ag \frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)} agus \frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x^{2}+x-2x-2-x^{2}+x-1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Déan iolrúcháin in \left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right).
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Cumaisc téarmaí comhchosúla in: x^{2}+x-2x-2-x^{2}+x-1.
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Fachtóirigh x^{3}+1.
\frac{-3+x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Tá an t-ainmneoir céanna ag \frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)} agus \frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}
Cumaisc téarmaí comhchosúla in: -3+x^{2}+x+3.
\frac{x\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}.
\frac{x}{x^{2}-x+1}
Cealaigh x+1 mar uimhreoir agus ainmneoir.