Réitigh do x.
x=8
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
10\left(x+6\right)+8\left(x-3\right)=5\left(5x-4\right)
Iolraigh an dá thaobh den chothromóid faoi 40, an comhiolraí is lú de 4,5,8.
10x+60+8\left(x-3\right)=5\left(5x-4\right)
Úsáid an t-airí dáileach chun 10 a mhéadú faoi x+6.
10x+60+8x-24=5\left(5x-4\right)
Úsáid an t-airí dáileach chun 8 a mhéadú faoi x-3.
18x+60-24=5\left(5x-4\right)
Comhcheangail 10x agus 8x chun 18x a fháil.
18x+36=5\left(5x-4\right)
Dealaigh 24 ó 60 chun 36 a fháil.
18x+36=25x-20
Úsáid an t-airí dáileach chun 5 a mhéadú faoi 5x-4.
18x+36-25x=-20
Bain 25x ón dá thaobh.
-7x+36=-20
Comhcheangail 18x agus -25x chun -7x a fháil.
-7x=-20-36
Bain 36 ón dá thaobh.
-7x=-56
Dealaigh 36 ó -20 chun -56 a fháil.
x=\frac{-56}{-7}
Roinn an dá thaobh faoi -7.
x=8
Roinn -56 faoi -7 chun 8 a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}