Luacháil
\frac{x^{4}-2x^{3}+6x^{2}-24x+27}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Fairsingigh
\frac{x^{4}-2x^{3}+6x^{2}-24x+27}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Graf
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
\frac{ x }{ x-3 } + \frac{ x+1 }{ { x }^{ 2 } +9 } + \frac{ 2 }{ { x }^{ 2 } -6x+9 }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{x\left(x^{2}+9\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x-3 agus x^{2}+9 ná \left(x-3\right)\left(x^{2}+9\right). Méadaigh \frac{x}{x-3} faoi \frac{x^{2}+9}{x^{2}+9}. Méadaigh \frac{x+1}{x^{2}+9} faoi \frac{x-3}{x-3}.
\frac{x\left(x^{2}+9\right)+\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Tá an t-ainmneoir céanna ag \frac{x\left(x^{2}+9\right)}{\left(x-3\right)\left(x^{2}+9\right)} agus \frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{3}+9x+x^{2}-3x+x-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Déan iolrúcháin in x\left(x^{2}+9\right)+\left(x+1\right)\left(x-3\right).
\frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Cumaisc téarmaí comhchosúla in: x^{3}+9x+x^{2}-3x+x-3.
\frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{\left(x-3\right)^{2}}
Fachtóirigh x^{2}-6x+9.
\frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}+\frac{2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-3\right)\left(x^{2}+9\right) agus \left(x-3\right)^{2} ná \left(x-3\right)^{2}\left(x^{2}+9\right). Méadaigh \frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)} faoi \frac{x-3}{x-3}. Méadaigh \frac{2}{\left(x-3\right)^{2}} faoi \frac{x^{2}+9}{x^{2}+9}.
\frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)+2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Tá an t-ainmneoir céanna ag \frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)} agus \frac{2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{4}-3x^{3}+7x^{2}-21x+x^{3}-3x^{2}-3x+9+2x^{2}+18}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Déan iolrúcháin in \left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)+2\left(x^{2}+9\right).
\frac{x^{4}-2x^{3}+6x^{2}-24x+27}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Cumaisc téarmaí comhchosúla in: x^{4}-3x^{3}+7x^{2}-21x+x^{3}-3x^{2}-3x+9+2x^{2}+18.
\frac{x^{4}-2x^{3}+6x^{2}-24x+27}{x^{4}-6x^{3}+18x^{2}-54x+81}
Fairsingigh \left(x-3\right)^{2}\left(x^{2}+9\right)
\frac{x\left(x^{2}+9\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x-3 agus x^{2}+9 ná \left(x-3\right)\left(x^{2}+9\right). Méadaigh \frac{x}{x-3} faoi \frac{x^{2}+9}{x^{2}+9}. Méadaigh \frac{x+1}{x^{2}+9} faoi \frac{x-3}{x-3}.
\frac{x\left(x^{2}+9\right)+\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Tá an t-ainmneoir céanna ag \frac{x\left(x^{2}+9\right)}{\left(x-3\right)\left(x^{2}+9\right)} agus \frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{3}+9x+x^{2}-3x+x-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Déan iolrúcháin in x\left(x^{2}+9\right)+\left(x+1\right)\left(x-3\right).
\frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Cumaisc téarmaí comhchosúla in: x^{3}+9x+x^{2}-3x+x-3.
\frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{\left(x-3\right)^{2}}
Fachtóirigh x^{2}-6x+9.
\frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}+\frac{2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-3\right)\left(x^{2}+9\right) agus \left(x-3\right)^{2} ná \left(x-3\right)^{2}\left(x^{2}+9\right). Méadaigh \frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)} faoi \frac{x-3}{x-3}. Méadaigh \frac{2}{\left(x-3\right)^{2}} faoi \frac{x^{2}+9}{x^{2}+9}.
\frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)+2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Tá an t-ainmneoir céanna ag \frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)} agus \frac{2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{4}-3x^{3}+7x^{2}-21x+x^{3}-3x^{2}-3x+9+2x^{2}+18}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Déan iolrúcháin in \left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)+2\left(x^{2}+9\right).
\frac{x^{4}-2x^{3}+6x^{2}-24x+27}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Cumaisc téarmaí comhchosúla in: x^{4}-3x^{3}+7x^{2}-21x+x^{3}-3x^{2}-3x+9+2x^{2}+18.
\frac{x^{4}-2x^{3}+6x^{2}-24x+27}{x^{4}-6x^{3}+18x^{2}-54x+81}
Fairsingigh \left(x-3\right)^{2}\left(x^{2}+9\right)
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}