Réitigh do x.
x=7+\frac{14}{y}
y\neq 0
Réitigh do y.
y=-\frac{14}{7-x}
x\neq 7
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
yx-7\times 2=7y
Iolraigh an dá thaobh den chothromóid faoi 7y, an comhiolraí is lú de 7,y.
yx-14=7y
Méadaigh -7 agus 2 chun -14 a fháil.
yx=7y+14
Cuir 14 leis an dá thaobh.
\frac{yx}{y}=\frac{7y+14}{y}
Roinn an dá thaobh faoi y.
x=\frac{7y+14}{y}
Má roinntear é faoi y cuirtear an iolrúchán faoi y ar ceal.
x=7+\frac{14}{y}
Roinn 14+7y faoi y.
yx-7\times 2=7y
Ní féidir leis an athróg y a bheith comhionann le 0 toisc nach bhfuil an roinnt faoi nialas sainithe. Iolraigh an dá thaobh den chothromóid faoi 7y, an comhiolraí is lú de 7,y.
yx-14=7y
Méadaigh -7 agus 2 chun -14 a fháil.
yx-14-7y=0
Bain 7y ón dá thaobh.
yx-7y=14
Cuir 14 leis an dá thaobh. Is ionann rud ar bith móide nialas agus a shuim féin.
\left(x-7\right)y=14
Comhcheangail na téarmaí ar fad ina bhfuil y.
\frac{\left(x-7\right)y}{x-7}=\frac{14}{x-7}
Roinn an dá thaobh faoi x-7.
y=\frac{14}{x-7}
Má roinntear é faoi x-7 cuirtear an iolrúchán faoi x-7 ar ceal.
y=\frac{14}{x-7}\text{, }y\neq 0
Ní féidir leis an athróg y a bheith comhionann le 0.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}