Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. x
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{3\left(x-3\right)}{\left(x-3\right)\left(2x-5\right)}-\frac{4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 2x-5 agus x-3 ná \left(x-3\right)\left(2x-5\right). Méadaigh \frac{3}{2x-5} faoi \frac{x-3}{x-3}. Méadaigh \frac{4}{x-3} faoi \frac{2x-5}{2x-5}.
\frac{3\left(x-3\right)-4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)}
Tá an t-ainmneoir céanna ag \frac{3\left(x-3\right)}{\left(x-3\right)\left(2x-5\right)} agus \frac{4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{3x-9-8x+20}{\left(x-3\right)\left(2x-5\right)}
Déan iolrúcháin in 3\left(x-3\right)-4\left(2x-5\right).
\frac{-5x+11}{\left(x-3\right)\left(2x-5\right)}
Cumaisc téarmaí comhchosúla in: 3x-9-8x+20.
\frac{-5x+11}{2x^{2}-11x+15}
Fairsingigh \left(x-3\right)\left(2x-5\right)
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x-3\right)}{\left(x-3\right)\left(2x-5\right)}-\frac{4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)})
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 2x-5 agus x-3 ná \left(x-3\right)\left(2x-5\right). Méadaigh \frac{3}{2x-5} faoi \frac{x-3}{x-3}. Méadaigh \frac{4}{x-3} faoi \frac{2x-5}{2x-5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x-3\right)-4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)})
Tá an t-ainmneoir céanna ag \frac{3\left(x-3\right)}{\left(x-3\right)\left(2x-5\right)} agus \frac{4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x-9-8x+20}{\left(x-3\right)\left(2x-5\right)})
Déan iolrúcháin in 3\left(x-3\right)-4\left(2x-5\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x+11}{\left(x-3\right)\left(2x-5\right)})
Cumaisc téarmaí comhchosúla in: 3x-9-8x+20.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x+11}{2x^{2}-5x-6x+15})
Cuir an t-airí dáileacháin i bhfeidhm trí gach téarma de x-3 a iolrú faoi gach téarma de 2x-5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x+11}{2x^{2}-11x+15})
Comhcheangail -5x agus -6x chun -11x a fháil.
\frac{\left(2x^{2}-11x^{1}+15\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{1}+11)-\left(-5x^{1}+11\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}-11x^{1}+15)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
Do dhá fheidhm indifreáilte ar bith, is ionann díorthach líon an dá fheidhme agus an t-ainmneoir méadaithe faoi dhíorthach an uimhreora lúide an t-uimhreoir méadaithe faoi dhíorthach an ainmneora, agus iad ar fad roinnte faoin ainmneoir cearnaithe.
\frac{\left(2x^{2}-11x^{1}+15\right)\left(-5\right)x^{1-1}-\left(-5x^{1}+11\right)\left(2\times 2x^{2-1}-11x^{1-1}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
Is ionann díorthach iltéarmaigh agus suim dhíorthaigh a théarmaí. Is ionann díorthach téarma thairisigh agus 0. Is ionann díorthach ax^{n} agus nax^{n-1}.
\frac{\left(2x^{2}-11x^{1}+15\right)\left(-5\right)x^{0}-\left(-5x^{1}+11\right)\left(4x^{1}-11x^{0}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
Simpligh.
\frac{2x^{2}\left(-5\right)x^{0}-11x^{1}\left(-5\right)x^{0}+15\left(-5\right)x^{0}-\left(-5x^{1}+11\right)\left(4x^{1}-11x^{0}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
Méadaigh 2x^{2}-11x^{1}+15 faoi -5x^{0}.
\frac{2x^{2}\left(-5\right)x^{0}-11x^{1}\left(-5\right)x^{0}+15\left(-5\right)x^{0}-\left(-5x^{1}\times 4x^{1}-5x^{1}\left(-11\right)x^{0}+11\times 4x^{1}+11\left(-11\right)x^{0}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
Méadaigh -5x^{1}+11 faoi 4x^{1}-11x^{0}.
\frac{2\left(-5\right)x^{2}-11\left(-5\right)x^{1}+15\left(-5\right)x^{0}-\left(-5\times 4x^{1+1}-5\left(-11\right)x^{1}+11\times 4x^{1}+11\left(-11\right)x^{0}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
Chun cumhachtaí an bhoinn chéanna a mhéadú, suimigh a n-easpónaint.
\frac{-10x^{2}+55x^{1}-75x^{0}-\left(-20x^{2}+55x^{1}+44x^{1}-121x^{0}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
Simpligh.
\frac{10x^{2}-44x^{1}+46x^{0}}{\left(2x^{2}-11x^{1}+15\right)^{2}}
Cuir téarmaí cosúla le chéile.
\frac{10x^{2}-44x+46x^{0}}{\left(2x^{2}-11x+15\right)^{2}}
Do théarma ar bith t, t^{1}=t.
\frac{10x^{2}-44x+46\times 1}{\left(2x^{2}-11x+15\right)^{2}}
Do théarma ar bith t ach amháin 0, t^{0}=1.
\frac{10x^{2}-44x+46}{\left(2x^{2}-11x+15\right)^{2}}
Do théarma ar bith t, t\times 1=t agus 1t=t.