Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

3+\left(x-2\right)\times 2=\left(x-2\right)\left(x+2\right)
Ní féidir leis an athróg x a bheith comhionann le haon cheann de na luachanna -2,2 toisc nach bhfuil an roinnt faoi nialas sainithe. Iolraigh an dá thaobh den chothromóid faoi \left(x-2\right)\left(x+2\right), an comhiolraí is lú de x^{2}-4,x+2.
3+2x-4=\left(x-2\right)\left(x+2\right)
Úsáid an t-airí dáileach chun x-2 a mhéadú faoi 2.
-1+2x=\left(x-2\right)\left(x+2\right)
Dealaigh 4 ó 3 chun -1 a fháil.
-1+2x=x^{2}-4
Mar shampla \left(x-2\right)\left(x+2\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Cearnóg 2.
-1+2x-x^{2}=-4
Bain x^{2} ón dá thaobh.
-1+2x-x^{2}+4=0
Cuir 4 leis an dá thaobh.
3+2x-x^{2}=0
Suimigh -1 agus 4 chun 3 a fháil.
-x^{2}+2x+3=0
Atheagraigh an t-iltéarmach lena chur i bhfoirm chaighdeánach. Cuir na téarmaí in ord ón gcumhacht is airde go dtí an chumhacht is ísle.
a+b=2 ab=-3=-3
Chun an chothromóid a réiteach, déan an taobh clé a fhachtóiriú de réir na grúpála. Ní mór an taobh clé a athscríobh mar -x^{2}+ax+bx+3 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
a=3 b=-1
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhearfach ná ag an uimhir dhiúltach. Is é an péire sin réiteach an chórais.
\left(-x^{2}+3x\right)+\left(-x+3\right)
Athscríobh -x^{2}+2x+3 mar \left(-x^{2}+3x\right)+\left(-x+3\right).
-x\left(x-3\right)-\left(x-3\right)
Fág -x as an áireamh sa chead ghrúpa agus -1 sa dara grúpa.
\left(x-3\right)\left(-x-1\right)
Fág an téarma coitianta x-3 as an áireamh ag úsáid airí dháiligh.
x=3 x=-1
Réitigh x-3=0 agus -x-1=0 chun réitigh cothromóide a fháil.
3+\left(x-2\right)\times 2=\left(x-2\right)\left(x+2\right)
Ní féidir leis an athróg x a bheith comhionann le haon cheann de na luachanna -2,2 toisc nach bhfuil an roinnt faoi nialas sainithe. Iolraigh an dá thaobh den chothromóid faoi \left(x-2\right)\left(x+2\right), an comhiolraí is lú de x^{2}-4,x+2.
3+2x-4=\left(x-2\right)\left(x+2\right)
Úsáid an t-airí dáileach chun x-2 a mhéadú faoi 2.
-1+2x=\left(x-2\right)\left(x+2\right)
Dealaigh 4 ó 3 chun -1 a fháil.
-1+2x=x^{2}-4
Mar shampla \left(x-2\right)\left(x+2\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Cearnóg 2.
-1+2x-x^{2}=-4
Bain x^{2} ón dá thaobh.
-1+2x-x^{2}+4=0
Cuir 4 leis an dá thaobh.
3+2x-x^{2}=0
Suimigh -1 agus 4 chun 3 a fháil.
-x^{2}+2x+3=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir -1 in ionad a, 2 in ionad b, agus 3 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Cearnóg 2.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
Méadaigh -4 faoi -1.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
Méadaigh 4 faoi 3.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
Suimigh 4 le 12?
x=\frac{-2±4}{2\left(-1\right)}
Tóg fréamh chearnach 16.
x=\frac{-2±4}{-2}
Méadaigh 2 faoi -1.
x=\frac{2}{-2}
Réitigh an chothromóid x=\frac{-2±4}{-2} nuair is ionann ± agus plus. Suimigh -2 le 4?
x=-1
Roinn 2 faoi -2.
x=-\frac{6}{-2}
Réitigh an chothromóid x=\frac{-2±4}{-2} nuair is ionann ± agus míneas. Dealaigh 4 ó -2.
x=3
Roinn -6 faoi -2.
x=-1 x=3
Tá an chothromóid réitithe anois.
3+\left(x-2\right)\times 2=\left(x-2\right)\left(x+2\right)
Ní féidir leis an athróg x a bheith comhionann le haon cheann de na luachanna -2,2 toisc nach bhfuil an roinnt faoi nialas sainithe. Iolraigh an dá thaobh den chothromóid faoi \left(x-2\right)\left(x+2\right), an comhiolraí is lú de x^{2}-4,x+2.
3+2x-4=\left(x-2\right)\left(x+2\right)
Úsáid an t-airí dáileach chun x-2 a mhéadú faoi 2.
-1+2x=\left(x-2\right)\left(x+2\right)
Dealaigh 4 ó 3 chun -1 a fháil.
-1+2x=x^{2}-4
Mar shampla \left(x-2\right)\left(x+2\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Cearnóg 2.
-1+2x-x^{2}=-4
Bain x^{2} ón dá thaobh.
2x-x^{2}=-4+1
Cuir 1 leis an dá thaobh.
2x-x^{2}=-3
Suimigh -4 agus 1 chun -3 a fháil.
-x^{2}+2x=-3
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
\frac{-x^{2}+2x}{-1}=-\frac{3}{-1}
Roinn an dá thaobh faoi -1.
x^{2}+\frac{2}{-1}x=-\frac{3}{-1}
Má roinntear é faoi -1 cuirtear an iolrúchán faoi -1 ar ceal.
x^{2}-2x=-\frac{3}{-1}
Roinn 2 faoi -1.
x^{2}-2x=3
Roinn -3 faoi -1.
x^{2}-2x+1=3+1
Roinn -2, comhéifeacht an téarma x, faoi 2 chun -1 a fháil. Ansin suimigh uimhir chearnach -1 leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-2x+1=4
Suimigh 3 le 1?
\left(x-1\right)^{2}=4
Fachtóirigh x^{2}-2x+1. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-1=2 x-1=-2
Simpligh.
x=3 x=-1
Cuir 1 leis an dá thaobh den chothromóid.