Réitigh do b.
b=\frac{\left(a+18\right)^{2}}{5}
a\leq -18
Réitigh do a.
a=-\left(\sqrt{5b}+18\right)
b\geq 0
Tráth na gCeist
Algebra
5 fadhbanna cosúil le:
\frac{ 2+ \sqrt{ 5 } }{ 2- \sqrt{ 5 } } + \frac{ 2- \sqrt{ 5 } }{ 2+ \sqrt{ 5 } } = a+ \sqrt{ 5b }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 2+\sqrt{5} chun ainmneoir \frac{2+\sqrt{5}}{2-\sqrt{5}} a thiontú in uimhir chóimheasta.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Mar shampla \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{4-5}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Cearnóg 2. Cearnóg \sqrt{5}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Dealaigh 5 ó 4 chun -1 a fháil.
\frac{\left(2+\sqrt{5}\right)^{2}}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Méadaigh 2+\sqrt{5} agus 2+\sqrt{5} chun \left(2+\sqrt{5}\right)^{2} a fháil.
\frac{4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(2+\sqrt{5}\right)^{2} a leathnú.
\frac{4+4\sqrt{5}+5}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Is é 5 uimhir chearnach \sqrt{5}.
\frac{9+4\sqrt{5}}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Suimigh 4 agus 5 chun 9 a fháil.
-9-4\sqrt{5}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Aon rud a roinntear ar -1, tugann sé a mhalairt. Chun an mhalairt ar 9+4\sqrt{5} a aimsiú, aimsigh an mhalairt ar gach téarma.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}=a+\sqrt{5b}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 2-\sqrt{5} chun ainmneoir \frac{2-\sqrt{5}}{2+\sqrt{5}} a thiontú in uimhir chóimheasta.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}=a+\sqrt{5b}
Mar shampla \left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{4-5}=a+\sqrt{5b}
Cearnóg 2. Cearnóg \sqrt{5}.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{-1}=a+\sqrt{5b}
Dealaigh 5 ó 4 chun -1 a fháil.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)^{2}}{-1}=a+\sqrt{5b}
Méadaigh 2-\sqrt{5} agus 2-\sqrt{5} chun \left(2-\sqrt{5}\right)^{2} a fháil.
-9-4\sqrt{5}+\frac{4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-1}=a+\sqrt{5b}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(2-\sqrt{5}\right)^{2} a leathnú.
-9-4\sqrt{5}+\frac{4-4\sqrt{5}+5}{-1}=a+\sqrt{5b}
Is é 5 uimhir chearnach \sqrt{5}.
-9-4\sqrt{5}+\frac{9-4\sqrt{5}}{-1}=a+\sqrt{5b}
Suimigh 4 agus 5 chun 9 a fháil.
-9-4\sqrt{5}-9+4\sqrt{5}=a+\sqrt{5b}
Aon rud a roinntear ar -1, tugann sé a mhalairt. Chun an mhalairt ar 9-4\sqrt{5} a aimsiú, aimsigh an mhalairt ar gach téarma.
-18-4\sqrt{5}+4\sqrt{5}=a+\sqrt{5b}
Dealaigh 9 ó -9 chun -18 a fháil.
-18=a+\sqrt{5b}
Comhcheangail -4\sqrt{5} agus 4\sqrt{5} chun 0 a fháil.
a+\sqrt{5b}=-18
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
\sqrt{5b}=-18-a
Bain a ón dá thaobh.
5b=\left(a+18\right)^{2}
Cearnaigh an dá thaobh den chothromóid.
\frac{5b}{5}=\frac{\left(a+18\right)^{2}}{5}
Roinn an dá thaobh faoi 5.
b=\frac{\left(a+18\right)^{2}}{5}
Má roinntear é faoi 5 cuirtear an iolrúchán faoi 5 ar ceal.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}