Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{\left(5\sqrt{3}-\sqrt{5}\right)\left(5\sqrt{3}+\sqrt{5}\right)}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 5\sqrt{3}+\sqrt{5} chun ainmneoir \frac{14}{5\sqrt{3}-\sqrt{5}} a thiontú in uimhir chóimheasta.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{\left(5\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Mar shampla \left(5\sqrt{3}-\sqrt{5}\right)\left(5\sqrt{3}+\sqrt{5}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{5^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Fairsingigh \left(5\sqrt{3}\right)^{2}
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{25\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Ríomh cumhacht 5 de 2 agus faigh 25.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{25\times 3-\left(\sqrt{5}\right)^{2}}
Is é 3 uimhir chearnach \sqrt{3}.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{75-\left(\sqrt{5}\right)^{2}}
Méadaigh 25 agus 3 chun 75 a fháil.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{75-5}
Is é 5 uimhir chearnach \sqrt{5}.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{70}
Dealaigh 5 ó 75 chun 70 a fháil.
\frac{1}{5}\left(5\sqrt{3}+\sqrt{5}\right)
Roinn 14\left(5\sqrt{3}+\sqrt{5}\right) faoi 70 chun \frac{1}{5}\left(5\sqrt{3}+\sqrt{5}\right) a fháil.
\frac{1}{5}\times 5\sqrt{3}+\frac{1}{5}\sqrt{5}
Úsáid an t-airí dáileach chun \frac{1}{5} a mhéadú faoi 5\sqrt{3}+\sqrt{5}.
\sqrt{3}+\frac{1}{5}\sqrt{5}
Cealaigh 5 agus 5.