Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{-y^{2}}{y^{2}\left(-y+2\right)^{2}}-\frac{\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(2-y\right)^{2} agus y^{2} ná y^{2}\left(-y+2\right)^{2}. Méadaigh \frac{-1}{\left(2-y\right)^{2}} faoi \frac{y^{2}}{y^{2}}. Méadaigh \frac{1}{y^{2}} faoi \frac{\left(-y+2\right)^{2}}{\left(-y+2\right)^{2}}.
\frac{-y^{2}-\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}
Tá an t-ainmneoir céanna ag \frac{-y^{2}}{y^{2}\left(-y+2\right)^{2}} agus \frac{\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{-y^{2}-y^{2}+4y-4}{y^{2}\left(-y+2\right)^{2}}
Déan iolrúcháin in -y^{2}-\left(-y+2\right)^{2}.
\frac{-2y^{2}+4y-4}{y^{2}\left(-y+2\right)^{2}}
Cumaisc téarmaí comhchosúla in: -y^{2}-y^{2}+4y-4.
\frac{-2y^{2}+4y-4}{y^{4}-4y^{3}+4y^{2}}
Fairsingigh y^{2}\left(-y+2\right)^{2}
\frac{-y^{2}}{y^{2}\left(-y+2\right)^{2}}-\frac{\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(2-y\right)^{2} agus y^{2} ná y^{2}\left(-y+2\right)^{2}. Méadaigh \frac{-1}{\left(2-y\right)^{2}} faoi \frac{y^{2}}{y^{2}}. Méadaigh \frac{1}{y^{2}} faoi \frac{\left(-y+2\right)^{2}}{\left(-y+2\right)^{2}}.
\frac{-y^{2}-\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}
Tá an t-ainmneoir céanna ag \frac{-y^{2}}{y^{2}\left(-y+2\right)^{2}} agus \frac{\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{-y^{2}-y^{2}+4y-4}{y^{2}\left(-y+2\right)^{2}}
Déan iolrúcháin in -y^{2}-\left(-y+2\right)^{2}.
\frac{-2y^{2}+4y-4}{y^{2}\left(-y+2\right)^{2}}
Cumaisc téarmaí comhchosúla in: -y^{2}-y^{2}+4y-4.
\frac{-2y^{2}+4y-4}{y^{4}-4y^{3}+4y^{2}}
Fairsingigh y^{2}\left(-y+2\right)^{2}