Réitigh do t.
t = \frac{32}{7} = 4\frac{4}{7} \approx 4.571428571
Roinn
Cóipeáladh go dtí an ghearrthaisce
17\left(20^{2}+\left(1.5t\right)^{2}-\left(12+1.5t\right)^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Ní féidir leis an athróg t a bheith comhionann le 0 toisc nach bhfuil an roinnt faoi nialas sainithe. Iolraigh an dá thaobh den chothromóid faoi 1020t, an comhiolraí is lú de 60t,-102t.
17\left(400+\left(1.5t\right)^{2}-\left(12+1.5t\right)^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Ríomh cumhacht 20 de 2 agus faigh 400.
17\left(400+1.5^{2}t^{2}-\left(12+1.5t\right)^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Fairsingigh \left(1.5t\right)^{2}
17\left(400+2.25t^{2}-\left(12+1.5t\right)^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Ríomh cumhacht 1.5 de 2 agus faigh 2.25.
17\left(400+2.25t^{2}-\left(144+36t+2.25t^{2}\right)\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(12+1.5t\right)^{2} a leathnú.
17\left(400+2.25t^{2}-144-36t-2.25t^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Chun an mhalairt ar 144+36t+2.25t^{2} a aimsiú, aimsigh an mhalairt ar gach téarma.
17\left(256+2.25t^{2}-36t-2.25t^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Dealaigh 144 ó 400 chun 256 a fháil.
17\left(256-36t\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Comhcheangail 2.25t^{2} agus -2.25t^{2} chun 0 a fháil.
4352-612t=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Úsáid an t-airí dáileach chun 17 a mhéadú faoi 256-36t.
4352-612t=-10\left(1156+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Ríomh cumhacht 34 de 2 agus faigh 1156.
4352-612t=-10\left(1156+1.5^{2}t^{2}-\left(30+1.5t\right)^{2}\right)
Fairsingigh \left(1.5t\right)^{2}
4352-612t=-10\left(1156+2.25t^{2}-\left(30+1.5t\right)^{2}\right)
Ríomh cumhacht 1.5 de 2 agus faigh 2.25.
4352-612t=-10\left(1156+2.25t^{2}-\left(900+90t+2.25t^{2}\right)\right)
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(30+1.5t\right)^{2} a leathnú.
4352-612t=-10\left(1156+2.25t^{2}-900-90t-2.25t^{2}\right)
Chun an mhalairt ar 900+90t+2.25t^{2} a aimsiú, aimsigh an mhalairt ar gach téarma.
4352-612t=-10\left(256+2.25t^{2}-90t-2.25t^{2}\right)
Dealaigh 900 ó 1156 chun 256 a fháil.
4352-612t=-10\left(256-90t\right)
Comhcheangail 2.25t^{2} agus -2.25t^{2} chun 0 a fháil.
4352-612t=-2560+900t
Úsáid an t-airí dáileach chun -10 a mhéadú faoi 256-90t.
4352-612t-900t=-2560
Bain 900t ón dá thaobh.
4352-1512t=-2560
Comhcheangail -612t agus -900t chun -1512t a fháil.
-1512t=-2560-4352
Bain 4352 ón dá thaobh.
-1512t=-6912
Dealaigh 4352 ó -2560 chun -6912 a fháil.
t=\frac{-6912}{-1512}
Roinn an dá thaobh faoi -1512.
t=\frac{32}{7}
Laghdaigh an codán \frac{-6912}{-1512} chuig na téarmaí is ísle trí -216 a bhaint agus a chealú.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}