Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{\left(2\sqrt{3}+1-1\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Comhcheangail \sqrt{3} agus \sqrt{3} chun 2\sqrt{3} a fháil.
\frac{\left(2\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Dealaigh 1 ó 1 chun 0 a fháil.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Fairsingigh \left(2\sqrt{3}\right)^{2}
\frac{4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Ríomh cumhacht 2 de 2 agus faigh 4.
\frac{4\times 3}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Is é 3 uimhir chearnach \sqrt{3}.
\frac{12}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Méadaigh 4 agus 3 chun 12 a fháil.
\frac{12}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(\sqrt{3}+1\right)^{2} a leathnú.
\frac{12}{3+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Is é 3 uimhir chearnach \sqrt{3}.
\frac{12}{4+2\sqrt{3}-\left(\sqrt{3}-1\right)^{2}}
Suimigh 3 agus 1 chun 4 a fháil.
\frac{12}{4+2\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(\sqrt{3}-1\right)^{2} a leathnú.
\frac{12}{4+2\sqrt{3}-\left(3-2\sqrt{3}+1\right)}
Is é 3 uimhir chearnach \sqrt{3}.
\frac{12}{4+2\sqrt{3}-\left(4-2\sqrt{3}\right)}
Suimigh 3 agus 1 chun 4 a fháil.
\frac{12}{4+2\sqrt{3}-4+2\sqrt{3}}
Chun an mhalairt ar 4-2\sqrt{3} a aimsiú, aimsigh an mhalairt ar gach téarma.
\frac{12}{2\sqrt{3}+2\sqrt{3}}
Dealaigh 4 ó 4 chun 0 a fháil.
\frac{12}{4\sqrt{3}}
Comhcheangail 2\sqrt{3} agus 2\sqrt{3} chun 4\sqrt{3} a fháil.
\frac{12\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{3} chun ainmneoir \frac{12}{4\sqrt{3}} a thiontú in uimhir chóimheasta.
\frac{12\sqrt{3}}{4\times 3}
Is é 3 uimhir chearnach \sqrt{3}.
\sqrt{3}
Cealaigh 3\times 4 mar uimhreoir agus ainmneoir.
\frac{\left(2\sqrt{3}+1-1\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Comhcheangail \sqrt{3} agus \sqrt{3} chun 2\sqrt{3} a fháil.
\frac{\left(2\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Dealaigh 1 ó 1 chun 0 a fháil.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Fairsingigh \left(2\sqrt{3}\right)^{2}
\frac{4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Ríomh cumhacht 2 de 2 agus faigh 4.
\frac{4\times 3}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Is é 3 uimhir chearnach \sqrt{3}.
\frac{12}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Méadaigh 4 agus 3 chun 12 a fháil.
\frac{12}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(\sqrt{3}+1\right)^{2} a leathnú.
\frac{12}{3+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Is é 3 uimhir chearnach \sqrt{3}.
\frac{12}{4+2\sqrt{3}-\left(\sqrt{3}-1\right)^{2}}
Suimigh 3 agus 1 chun 4 a fháil.
\frac{12}{4+2\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(\sqrt{3}-1\right)^{2} a leathnú.
\frac{12}{4+2\sqrt{3}-\left(3-2\sqrt{3}+1\right)}
Is é 3 uimhir chearnach \sqrt{3}.
\frac{12}{4+2\sqrt{3}-\left(4-2\sqrt{3}\right)}
Suimigh 3 agus 1 chun 4 a fháil.
\frac{12}{4+2\sqrt{3}-4+2\sqrt{3}}
Chun an mhalairt ar 4-2\sqrt{3} a aimsiú, aimsigh an mhalairt ar gach téarma.
\frac{12}{2\sqrt{3}+2\sqrt{3}}
Dealaigh 4 ó 4 chun 0 a fháil.
\frac{12}{4\sqrt{3}}
Comhcheangail 2\sqrt{3} agus 2\sqrt{3} chun 4\sqrt{3} a fháil.
\frac{12\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{3} chun ainmneoir \frac{12}{4\sqrt{3}} a thiontú in uimhir chóimheasta.
\frac{12\sqrt{3}}{4\times 3}
Is é 3 uimhir chearnach \sqrt{3}.
\sqrt{3}
Cealaigh 3\times 4 mar uimhreoir agus ainmneoir.