Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{\left(\sqrt{2}+2\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right)}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{2}-2\sqrt{3} chun ainmneoir \frac{\sqrt{2}-2}{\sqrt{2}+2\sqrt{3}} a thiontú in uimhir chóimheasta.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}
Mar shampla \left(\sqrt{2}+2\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-\left(2\sqrt{3}\right)^{2}}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-2^{2}\left(\sqrt{3}\right)^{2}}
Fairsingigh \left(2\sqrt{3}\right)^{2}
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-4\left(\sqrt{3}\right)^{2}}
Ríomh cumhacht 2 de 2 agus faigh 4.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-4\times 3}
Is é 3 uimhir chearnach \sqrt{3}.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-12}
Méadaigh 4 agus 3 chun 12 a fháil.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{-10}
Dealaigh 12 ó 2 chun -10 a fháil.
\frac{\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{3}-2\sqrt{2}+4\sqrt{3}}{-10}
Cuir an t-airí dáileacháin i bhfeidhm trí gach téarma de \sqrt{2}-2 a iolrú faoi gach téarma de \sqrt{2}-2\sqrt{3}.
\frac{2-2\sqrt{2}\sqrt{3}-2\sqrt{2}+4\sqrt{3}}{-10}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{2-2\sqrt{6}-2\sqrt{2}+4\sqrt{3}}{-10}
Iolraigh na huimhreacha faoin bhfréamh cearnach chun \sqrt{2} agus \sqrt{3} a iolrú.