Luacháil
5-3\sqrt{2}\approx 0.757359313
Tráth na gCeist
Arithmetic
5 fadhbanna cosúil le:
\frac{ \sqrt{ 2 } \left( 4- \sqrt{ 2 } \right) }{ 2 \left( \sqrt{ 2 } +1 \right) }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{4\sqrt{2}-\left(\sqrt{2}\right)^{2}}{2\left(\sqrt{2}+1\right)}
Úsáid an t-airí dáileach chun \sqrt{2} a mhéadú faoi 4-\sqrt{2}.
\frac{4\sqrt{2}-2}{2\left(\sqrt{2}+1\right)}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{4\sqrt{2}-2}{2\sqrt{2}+2}
Úsáid an t-airí dáileach chun 2 a mhéadú faoi \sqrt{2}+1.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{\left(2\sqrt{2}+2\right)\left(2\sqrt{2}-2\right)}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 2\sqrt{2}-2 chun ainmneoir \frac{4\sqrt{2}-2}{2\sqrt{2}+2} a thiontú in uimhir chóimheasta.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{\left(2\sqrt{2}\right)^{2}-2^{2}}
Mar shampla \left(2\sqrt{2}+2\right)\left(2\sqrt{2}-2\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{2^{2}\left(\sqrt{2}\right)^{2}-2^{2}}
Fairsingigh \left(2\sqrt{2}\right)^{2}
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{4\left(\sqrt{2}\right)^{2}-2^{2}}
Ríomh cumhacht 2 de 2 agus faigh 4.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{4\times 2-2^{2}}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{8-2^{2}}
Méadaigh 4 agus 2 chun 8 a fháil.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{8-4}
Ríomh cumhacht 2 de 2 agus faigh 4.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{4}
Dealaigh 4 ó 8 chun 4 a fháil.
\frac{8\left(\sqrt{2}\right)^{2}-8\sqrt{2}-4\sqrt{2}+4}{4}
Cuir an t-airí dáileacháin i bhfeidhm trí gach téarma de 4\sqrt{2}-2 a iolrú faoi gach téarma de 2\sqrt{2}-2.
\frac{8\times 2-8\sqrt{2}-4\sqrt{2}+4}{4}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{16-8\sqrt{2}-4\sqrt{2}+4}{4}
Méadaigh 8 agus 2 chun 16 a fháil.
\frac{16-12\sqrt{2}+4}{4}
Comhcheangail -8\sqrt{2} agus -4\sqrt{2} chun -12\sqrt{2} a fháil.
\frac{20-12\sqrt{2}}{4}
Suimigh 16 agus 4 chun 20 a fháil.
5-3\sqrt{2}
Roinn 20-12\sqrt{2} faoi 4 chun 5-3\sqrt{2} a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}