Luacháil
\frac{4}{a-1}
Fairsingigh
\frac{4}{a-1}
Tráth na gCeist
Polynomial
\frac{ \frac{ 3 }{ a-1 } + \frac{ a-3 }{ { a }^{ 2 } -1 } }{ \frac{ a }{ a+1 } }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\frac{3}{a-1}+\frac{a-3}{\left(a-1\right)\left(a+1\right)}}{\frac{a}{a+1}}
Fachtóirigh a^{2}-1.
\frac{\frac{3\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{a-3}{\left(a-1\right)\left(a+1\right)}}{\frac{a}{a+1}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de a-1 agus \left(a-1\right)\left(a+1\right) ná \left(a-1\right)\left(a+1\right). Méadaigh \frac{3}{a-1} faoi \frac{a+1}{a+1}.
\frac{\frac{3\left(a+1\right)+a-3}{\left(a-1\right)\left(a+1\right)}}{\frac{a}{a+1}}
Tá an t-ainmneoir céanna ag \frac{3\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} agus \frac{a-3}{\left(a-1\right)\left(a+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\frac{3a+3+a-3}{\left(a-1\right)\left(a+1\right)}}{\frac{a}{a+1}}
Déan iolrúcháin in 3\left(a+1\right)+a-3.
\frac{\frac{4a}{\left(a-1\right)\left(a+1\right)}}{\frac{a}{a+1}}
Cumaisc téarmaí comhchosúla in: 3a+3+a-3.
\frac{4a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)a}
Roinn \frac{4a}{\left(a-1\right)\left(a+1\right)} faoi \frac{a}{a+1} trí \frac{4a}{\left(a-1\right)\left(a+1\right)} a mhéadú faoi dheilín \frac{a}{a+1}.
\frac{4}{a-1}
Cealaigh a\left(a+1\right) mar uimhreoir agus ainmneoir.
\frac{\frac{3}{a-1}+\frac{a-3}{\left(a-1\right)\left(a+1\right)}}{\frac{a}{a+1}}
Fachtóirigh a^{2}-1.
\frac{\frac{3\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{a-3}{\left(a-1\right)\left(a+1\right)}}{\frac{a}{a+1}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de a-1 agus \left(a-1\right)\left(a+1\right) ná \left(a-1\right)\left(a+1\right). Méadaigh \frac{3}{a-1} faoi \frac{a+1}{a+1}.
\frac{\frac{3\left(a+1\right)+a-3}{\left(a-1\right)\left(a+1\right)}}{\frac{a}{a+1}}
Tá an t-ainmneoir céanna ag \frac{3\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} agus \frac{a-3}{\left(a-1\right)\left(a+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\frac{3a+3+a-3}{\left(a-1\right)\left(a+1\right)}}{\frac{a}{a+1}}
Déan iolrúcháin in 3\left(a+1\right)+a-3.
\frac{\frac{4a}{\left(a-1\right)\left(a+1\right)}}{\frac{a}{a+1}}
Cumaisc téarmaí comhchosúla in: 3a+3+a-3.
\frac{4a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)a}
Roinn \frac{4a}{\left(a-1\right)\left(a+1\right)} faoi \frac{a}{a+1} trí \frac{4a}{\left(a-1\right)\left(a+1\right)} a mhéadú faoi dheilín \frac{a}{a+1}.
\frac{4}{a-1}
Cealaigh a\left(a+1\right) mar uimhreoir agus ainmneoir.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}