Luacháil
\frac{139}{24}\approx 5.791666667
Fachtóirigh
\frac{139}{2 ^ {3} \cdot 3} = 5\frac{19}{24} = 5.791666666666667
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\frac{\frac{1}{2}}{\left(\frac{2}{3}\right)^{-1}}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Áirigh \sqrt[5]{\frac{1}{32}} agus faigh \frac{1}{2}.
\frac{\frac{\frac{1}{2}}{\frac{3}{2}}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Ríomh cumhacht \frac{2}{3} de -1 agus faigh \frac{3}{2}.
\frac{\frac{1}{2}\times \frac{2}{3}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Roinn \frac{1}{2} faoi \frac{3}{2} trí \frac{1}{2} a mhéadú faoi dheilín \frac{3}{2}.
\frac{\frac{1}{3}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Méadaigh \frac{1}{2} agus \frac{2}{3} chun \frac{1}{3} a fháil.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Dealaigh \frac{1}{3} ó 1 chun \frac{2}{3} a fháil.
\frac{\frac{1}{3}}{\frac{3}{2}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Méadaigh \frac{2}{3} agus \frac{9}{4} chun \frac{3}{2} a fháil.
\frac{\frac{1}{3}}{2}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Suimigh \frac{3}{2} agus \frac{1}{2} chun 2 a fháil.
\frac{1}{3\times 2}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Scríobh \frac{\frac{1}{3}}{2} mar chodán aonair.
\frac{1}{6}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Méadaigh 3 agus 2 chun 6 a fháil.
\frac{1}{6}+\frac{\sqrt{\frac{9}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Dealaigh \frac{16}{25} ó 1 chun \frac{9}{25} a fháil.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Athscríobh fréamh cearnach na roinnte \frac{9}{25} mar roinnt na bhfréamhacha cearnacha \frac{\sqrt{9}}{\sqrt{25}}. Tóg fréamh chearnach an uimhreora agus an ainmneora.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\frac{15}{2}}}
Ríomh cumhacht \frac{15}{2} de 1 agus faigh \frac{15}{2}.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{4}{5}\times \frac{2}{15}}
Roinn \frac{4}{5} faoi \frac{15}{2} trí \frac{4}{5} a mhéadú faoi dheilín \frac{15}{2}.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{8}{75}}
Méadaigh \frac{4}{5} agus \frac{2}{15} chun \frac{8}{75} a fháil.
\frac{1}{6}+\frac{3}{5}\times \frac{75}{8}
Roinn \frac{3}{5} faoi \frac{8}{75} trí \frac{3}{5} a mhéadú faoi dheilín \frac{8}{75}.
\frac{1}{6}+\frac{45}{8}
Méadaigh \frac{3}{5} agus \frac{75}{8} chun \frac{45}{8} a fháil.
\frac{139}{24}
Suimigh \frac{1}{6} agus \frac{45}{8} chun \frac{139}{24} a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}