Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{x-1}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+2\right)\left(x+3\right)}
Fachtóirigh x^{2}+4x+3. Fachtóirigh x^{2}+5x+6.
\frac{\left(x-1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+1\right)\left(x+3\right) agus \left(x+2\right)\left(x+3\right) ná \left(x+1\right)\left(x+2\right)\left(x+3\right). Méadaigh \frac{x-1}{\left(x+1\right)\left(x+3\right)} faoi \frac{x+2}{x+2}. Méadaigh \frac{2}{\left(x+2\right)\left(x+3\right)} faoi \frac{x+1}{x+1}.
\frac{\left(x-1\right)\left(x+2\right)+2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Tá an t-ainmneoir céanna ag \frac{\left(x-1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} agus \frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{2}+2x-x-2+2x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Déan iolrúcháin in \left(x-1\right)\left(x+2\right)+2\left(x+1\right).
\frac{x^{2}+3x}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Cumaisc téarmaí comhchosúla in: x^{2}+2x-x-2+2x+2.
\frac{x\left(x+3\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{x^{2}+3x}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}.
\frac{x}{\left(x+1\right)\left(x+2\right)}
Cealaigh x+3 mar uimhreoir agus ainmneoir.
\frac{x}{x^{2}+3x+2}
Fairsingigh \left(x+1\right)\left(x+2\right)
\frac{x-1}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+2\right)\left(x+3\right)}
Fachtóirigh x^{2}+4x+3. Fachtóirigh x^{2}+5x+6.
\frac{\left(x-1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+1\right)\left(x+3\right) agus \left(x+2\right)\left(x+3\right) ná \left(x+1\right)\left(x+2\right)\left(x+3\right). Méadaigh \frac{x-1}{\left(x+1\right)\left(x+3\right)} faoi \frac{x+2}{x+2}. Méadaigh \frac{2}{\left(x+2\right)\left(x+3\right)} faoi \frac{x+1}{x+1}.
\frac{\left(x-1\right)\left(x+2\right)+2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Tá an t-ainmneoir céanna ag \frac{\left(x-1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} agus \frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{2}+2x-x-2+2x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Déan iolrúcháin in \left(x-1\right)\left(x+2\right)+2\left(x+1\right).
\frac{x^{2}+3x}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Cumaisc téarmaí comhchosúla in: x^{2}+2x-x-2+2x+2.
\frac{x\left(x+3\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{x^{2}+3x}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}.
\frac{x}{\left(x+1\right)\left(x+2\right)}
Cealaigh x+3 mar uimhreoir agus ainmneoir.
\frac{x}{x^{2}+3x+2}
Fairsingigh \left(x+1\right)\left(x+2\right)