Réitigh do x.
x=-\frac{4\left(1-a\right)}{1+a-a^{2}}
a\neq \frac{\sqrt{5}+1}{2}\text{ and }a\neq \frac{1-\sqrt{5}}{2}\text{ and }a\neq 1
Réitigh do a.
a=-\frac{\sqrt{5x^{2}+8x+16}-x+4}{2x}
a=-\frac{-\sqrt{5x^{2}+8x+16}-x+4}{2x}\text{, }x\neq 0
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
x=ax\left(a-1\right)+\left(a-1\right)\times 4
Méadaigh an dá thaobh den chothromóid faoi a-1.
x=xa^{2}-ax+\left(a-1\right)\times 4
Úsáid an t-airí dáileach chun ax a mhéadú faoi a-1.
x=xa^{2}-ax+4a-4
Úsáid an t-airí dáileach chun a-1 a mhéadú faoi 4.
x-xa^{2}=-ax+4a-4
Bain xa^{2} ón dá thaobh.
x-xa^{2}+ax=4a-4
Cuir ax leis an dá thaobh.
ax-xa^{2}+x=4a-4
Athordaigh na téarmaí.
\left(a-a^{2}+1\right)x=4a-4
Comhcheangail na téarmaí ar fad ina bhfuil x.
\left(1+a-a^{2}\right)x=4a-4
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(1+a-a^{2}\right)x}{1+a-a^{2}}=\frac{4a-4}{1+a-a^{2}}
Roinn an dá thaobh faoi 1-a^{2}+a.
x=\frac{4a-4}{1+a-a^{2}}
Má roinntear é faoi 1-a^{2}+a cuirtear an iolrúchán faoi 1-a^{2}+a ar ceal.
x=\frac{4\left(a-1\right)}{1+a-a^{2}}
Roinn -4+4a faoi 1-a^{2}+a.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}