Luacháil
\frac{x-5}{x+1}
Fairsingigh
\frac{x-5}{x+1}
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\frac{x^{2}-6x+5}{x^{2}-x-20}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Roinn \frac{\frac{x^{2}-6x+5}{x^{2}-x-20}}{\frac{x-1}{x+4}} faoi \frac{x^{2}-4x-5}{x^{2}-10x+25} trí \frac{\frac{x^{2}-6x+5}{x^{2}-x-20}}{\frac{x-1}{x+4}} a mhéadú faoi dheilín \frac{x^{2}-4x-5}{x^{2}-10x+25}.
\frac{\frac{\left(x-5\right)\left(x-1\right)}{\left(x-5\right)\left(x+4\right)}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{x^{2}-6x+5}{x^{2}-x-20}.
\frac{\frac{x-1}{x+4}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Cealaigh x-5 mar uimhreoir agus ainmneoir.
\frac{\frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4}}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Scríobh \frac{x-1}{x+4}\left(x^{2}-10x+25\right) mar chodán aonair.
\frac{\frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4}}{\frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4}}
Scríobh \frac{x-1}{x+4}\left(x^{2}-4x-5\right) mar chodán aonair.
\frac{\left(x-1\right)\left(x^{2}-10x+25\right)\left(x+4\right)}{\left(x+4\right)\left(x-1\right)\left(x^{2}-4x-5\right)}
Roinn \frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4} faoi \frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4} trí \frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4} a mhéadú faoi dheilín \frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4}.
\frac{x^{2}-10x+25}{x^{2}-4x-5}
Cealaigh \left(x-1\right)\left(x+4\right) mar uimhreoir agus ainmneoir.
\frac{\left(x-5\right)^{2}}{\left(x-5\right)\left(x+1\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana.
\frac{x-5}{x+1}
Cealaigh x-5 mar uimhreoir agus ainmneoir.
\frac{\frac{x^{2}-6x+5}{x^{2}-x-20}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Roinn \frac{\frac{x^{2}-6x+5}{x^{2}-x-20}}{\frac{x-1}{x+4}} faoi \frac{x^{2}-4x-5}{x^{2}-10x+25} trí \frac{\frac{x^{2}-6x+5}{x^{2}-x-20}}{\frac{x-1}{x+4}} a mhéadú faoi dheilín \frac{x^{2}-4x-5}{x^{2}-10x+25}.
\frac{\frac{\left(x-5\right)\left(x-1\right)}{\left(x-5\right)\left(x+4\right)}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{x^{2}-6x+5}{x^{2}-x-20}.
\frac{\frac{x-1}{x+4}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Cealaigh x-5 mar uimhreoir agus ainmneoir.
\frac{\frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4}}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Scríobh \frac{x-1}{x+4}\left(x^{2}-10x+25\right) mar chodán aonair.
\frac{\frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4}}{\frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4}}
Scríobh \frac{x-1}{x+4}\left(x^{2}-4x-5\right) mar chodán aonair.
\frac{\left(x-1\right)\left(x^{2}-10x+25\right)\left(x+4\right)}{\left(x+4\right)\left(x-1\right)\left(x^{2}-4x-5\right)}
Roinn \frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4} faoi \frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4} trí \frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4} a mhéadú faoi dheilín \frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4}.
\frac{x^{2}-10x+25}{x^{2}-4x-5}
Cealaigh \left(x-1\right)\left(x+4\right) mar uimhreoir agus ainmneoir.
\frac{\left(x-5\right)^{2}}{\left(x-5\right)\left(x+1\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana.
\frac{x-5}{x+1}
Cealaigh x-5 mar uimhreoir agus ainmneoir.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}