Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{x^{2}\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x-1 agus x+2 ná \left(x-1\right)\left(x+2\right). Méadaigh \frac{x^{2}}{x-1} faoi \frac{x+2}{x+2}. Méadaigh \frac{x+1}{x+2} faoi \frac{x-1}{x-1}.
\frac{x^{2}\left(x+2\right)-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}
Tá an t-ainmneoir céanna ag \frac{x^{2}\left(x+2\right)}{\left(x-1\right)\left(x+2\right)} agus \frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x^{3}+2x^{2}-x^{2}+x-x+1}{\left(x-1\right)\left(x+2\right)}
Déan iolrúcháin in x^{2}\left(x+2\right)-\left(x+1\right)\left(x-1\right).
\frac{x^{3}+x^{2}+1}{\left(x-1\right)\left(x+2\right)}
Cumaisc téarmaí comhchosúla in: x^{3}+2x^{2}-x^{2}+x-x+1.
\frac{x^{3}+x^{2}+1}{x^{2}+x-2}
Fairsingigh \left(x-1\right)\left(x+2\right)
\frac{x^{2}\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x-1 agus x+2 ná \left(x-1\right)\left(x+2\right). Méadaigh \frac{x^{2}}{x-1} faoi \frac{x+2}{x+2}. Méadaigh \frac{x+1}{x+2} faoi \frac{x-1}{x-1}.
\frac{x^{2}\left(x+2\right)-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}
Tá an t-ainmneoir céanna ag \frac{x^{2}\left(x+2\right)}{\left(x-1\right)\left(x+2\right)} agus \frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x^{3}+2x^{2}-x^{2}+x-x+1}{\left(x-1\right)\left(x+2\right)}
Déan iolrúcháin in x^{2}\left(x+2\right)-\left(x+1\right)\left(x-1\right).
\frac{x^{3}+x^{2}+1}{\left(x-1\right)\left(x+2\right)}
Cumaisc téarmaí comhchosúla in: x^{3}+2x^{2}-x^{2}+x-x+1.
\frac{x^{3}+x^{2}+1}{x^{2}+x-2}
Fairsingigh \left(x-1\right)\left(x+2\right)