Luacháil
\frac{3xy}{2\left(x^{2}-y^{2}\right)}
Fachtóirigh
\frac{3xy}{2\left(x^{2}-y^{2}\right)}
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{x^{2}}{\left(x+y\right)\left(x-y\right)}-\frac{x}{x+y}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Fachtóirigh x^{2}-y^{2}.
\frac{x^{2}}{\left(x+y\right)\left(x-y\right)}-\frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+y\right)\left(x-y\right) agus x+y ná \left(x+y\right)\left(x-y\right). Méadaigh \frac{x}{x+y} faoi \frac{x-y}{x-y}.
\frac{x^{2}-x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Tá an t-ainmneoir céanna ag \frac{x^{2}}{\left(x+y\right)\left(x-y\right)} agus \frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x^{2}-x^{2}+xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Déan iolrúcháin in x^{2}-x\left(x-y\right).
\frac{xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Cumaisc téarmaí comhchosúla in: x^{2}-x^{2}+xy.
\frac{xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Fachtóirigh 2x-2y.
\frac{2xy}{2\left(x+y\right)\left(x-y\right)}+\frac{y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+y\right)\left(x-y\right) agus 2\left(x-y\right) ná 2\left(x+y\right)\left(x-y\right). Méadaigh \frac{xy}{\left(x+y\right)\left(x-y\right)} faoi \frac{2}{2}. Méadaigh \frac{y}{2\left(x-y\right)} faoi \frac{x+y}{x+y}.
\frac{2xy+y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Tá an t-ainmneoir céanna ag \frac{2xy}{2\left(x+y\right)\left(x-y\right)} agus \frac{y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{2xy+xy+y^{2}}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Déan iolrúcháin in 2xy+y\left(x+y\right).
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Cumaisc téarmaí comhchosúla in: 2xy+xy+y^{2}.
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2\left(x+y\right)\left(x-y\right)}
Fachtóirigh 2x^{2}-2y^{2}.
\frac{y^{2}+3xy-y^{2}}{2\left(x+y\right)\left(x-y\right)}
Tá an t-ainmneoir céanna ag \frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)} agus \frac{y^{2}}{2\left(x+y\right)\left(x-y\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{3xy}{2\left(x+y\right)\left(x-y\right)}
Cumaisc téarmaí comhchosúla in: y^{2}+3xy-y^{2}.
\frac{3xy}{2x^{2}-2y^{2}}
Fairsingigh 2\left(x+y\right)\left(x-y\right)
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}