Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fachtóirigh
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{x^{2}}{\left(x+y\right)\left(x-y\right)}-\frac{x}{x+y}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Fachtóirigh x^{2}-y^{2}.
\frac{x^{2}}{\left(x+y\right)\left(x-y\right)}-\frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+y\right)\left(x-y\right) agus x+y ná \left(x+y\right)\left(x-y\right). Méadaigh \frac{x}{x+y} faoi \frac{x-y}{x-y}.
\frac{x^{2}-x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Tá an t-ainmneoir céanna ag \frac{x^{2}}{\left(x+y\right)\left(x-y\right)} agus \frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x^{2}-x^{2}+xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Déan iolrúcháin in x^{2}-x\left(x-y\right).
\frac{xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Cumaisc téarmaí comhchosúla in: x^{2}-x^{2}+xy.
\frac{xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Fachtóirigh 2x-2y.
\frac{2xy}{2\left(x+y\right)\left(x-y\right)}+\frac{y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+y\right)\left(x-y\right) agus 2\left(x-y\right) ná 2\left(x+y\right)\left(x-y\right). Méadaigh \frac{xy}{\left(x+y\right)\left(x-y\right)} faoi \frac{2}{2}. Méadaigh \frac{y}{2\left(x-y\right)} faoi \frac{x+y}{x+y}.
\frac{2xy+y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Tá an t-ainmneoir céanna ag \frac{2xy}{2\left(x+y\right)\left(x-y\right)} agus \frac{y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{2xy+xy+y^{2}}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Déan iolrúcháin in 2xy+y\left(x+y\right).
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Cumaisc téarmaí comhchosúla in: 2xy+xy+y^{2}.
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2\left(x+y\right)\left(x-y\right)}
Fachtóirigh 2x^{2}-2y^{2}.
\frac{y^{2}+3xy-y^{2}}{2\left(x+y\right)\left(x-y\right)}
Tá an t-ainmneoir céanna ag \frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)} agus \frac{y^{2}}{2\left(x+y\right)\left(x-y\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{3xy}{2\left(x+y\right)\left(x-y\right)}
Cumaisc téarmaí comhchosúla in: y^{2}+3xy-y^{2}.
\frac{3xy}{2x^{2}-2y^{2}}
Fairsingigh 2\left(x+y\right)\left(x-y\right)