Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. y
Tick mark Image

Roinn

\frac{\left(x^{2}+xy-xz\right)\left(\left(x+z\right)^{2}-y^{2}\right)}{\left(\left(x+y\right)^{2}-z^{2}\right)x}\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}
Roinn \frac{x^{2}+xy-xz}{\left(x+y\right)^{2}-z^{2}} faoi \frac{x}{\left(x+z\right)^{2}-y^{2}} trí \frac{x^{2}+xy-xz}{\left(x+y\right)^{2}-z^{2}} a mhéadú faoi dheilín \frac{x}{\left(x+z\right)^{2}-y^{2}}.
\frac{x\left(x+y+z\right)\left(x+y-z\right)\left(x-y+z\right)}{x\left(x+y+z\right)\left(x+y-z\right)}\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{\left(x^{2}+xy-xz\right)\left(\left(x+z\right)^{2}-y^{2}\right)}{\left(\left(x+y\right)^{2}-z^{2}\right)x}.
\left(x-y+z\right)\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}
Cealaigh x\left(x+y+z\right)\left(x+y-z\right) mar uimhreoir agus ainmneoir.
\left(x-y+z\right)\times \frac{y\left(x-y-z\right)}{\left(x-y+z\right)\left(x-y-z\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}.
\left(x-y+z\right)\times \frac{y}{x-y+z}
Cealaigh x-y-z mar uimhreoir agus ainmneoir.
y
Cealaigh x-y+z agus x-y+z.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\left(x^{2}+xy-xz\right)\left(\left(x+z\right)^{2}-y^{2}\right)}{\left(\left(x+y\right)^{2}-z^{2}\right)x}\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}})
Roinn \frac{x^{2}+xy-xz}{\left(x+y\right)^{2}-z^{2}} faoi \frac{x}{\left(x+z\right)^{2}-y^{2}} trí \frac{x^{2}+xy-xz}{\left(x+y\right)^{2}-z^{2}} a mhéadú faoi dheilín \frac{x}{\left(x+z\right)^{2}-y^{2}}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{x\left(x+y+z\right)\left(x+y-z\right)\left(x-y+z\right)}{x\left(x+y+z\right)\left(x+y-z\right)}\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}})
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{\left(x^{2}+xy-xz\right)\left(\left(x+z\right)^{2}-y^{2}\right)}{\left(\left(x+y\right)^{2}-z^{2}\right)x}.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(x-y+z\right)\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}})
Cealaigh x\left(x+y+z\right)\left(x+y-z\right) mar uimhreoir agus ainmneoir.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(x-y+z\right)\times \frac{y\left(x-y-z\right)}{\left(x-y+z\right)\left(x-y-z\right)})
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(x-y+z\right)\times \frac{y}{x-y+z})
Cealaigh x-y-z mar uimhreoir agus ainmneoir.
\frac{\mathrm{d}}{\mathrm{d}y}(y)
Cealaigh x-y+z agus x-y+z.
y^{1-1}
Is é díorthach ax^{n} ná nax^{n-1}.
y^{0}
Dealaigh 1 ó 1.
1
Do théarma ar bith t ach amháin 0, t^{0}=1.