Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{x+2}{\left(x-4\right)\left(x+4\right)}+\frac{4}{\left(x-4\right)\left(5x+1\right)}
Fachtóirigh x^{2}-16. Fachtóirigh 5x^{2}-19x-4.
\frac{\left(x+2\right)\left(5x+1\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}+\frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-4\right)\left(x+4\right) agus \left(x-4\right)\left(5x+1\right) ná \left(x-4\right)\left(x+4\right)\left(5x+1\right). Méadaigh \frac{x+2}{\left(x-4\right)\left(x+4\right)} faoi \frac{5x+1}{5x+1}. Méadaigh \frac{4}{\left(x-4\right)\left(5x+1\right)} faoi \frac{x+4}{x+4}.
\frac{\left(x+2\right)\left(5x+1\right)+4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Tá an t-ainmneoir céanna ag \frac{\left(x+2\right)\left(5x+1\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)} agus \frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{5x^{2}+x+10x+2+4x+16}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Déan iolrúcháin in \left(x+2\right)\left(5x+1\right)+4\left(x+4\right).
\frac{5x^{2}+15x+18}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Cumaisc téarmaí comhchosúla in: 5x^{2}+x+10x+2+4x+16.
\frac{5x^{2}+15x+18}{5x^{3}+x^{2}-80x-16}
Fairsingigh \left(x-4\right)\left(x+4\right)\left(5x+1\right)
\frac{x+2}{\left(x-4\right)\left(x+4\right)}+\frac{4}{\left(x-4\right)\left(5x+1\right)}
Fachtóirigh x^{2}-16. Fachtóirigh 5x^{2}-19x-4.
\frac{\left(x+2\right)\left(5x+1\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}+\frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-4\right)\left(x+4\right) agus \left(x-4\right)\left(5x+1\right) ná \left(x-4\right)\left(x+4\right)\left(5x+1\right). Méadaigh \frac{x+2}{\left(x-4\right)\left(x+4\right)} faoi \frac{5x+1}{5x+1}. Méadaigh \frac{4}{\left(x-4\right)\left(5x+1\right)} faoi \frac{x+4}{x+4}.
\frac{\left(x+2\right)\left(5x+1\right)+4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Tá an t-ainmneoir céanna ag \frac{\left(x+2\right)\left(5x+1\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)} agus \frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{5x^{2}+x+10x+2+4x+16}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Déan iolrúcháin in \left(x+2\right)\left(5x+1\right)+4\left(x+4\right).
\frac{5x^{2}+15x+18}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Cumaisc téarmaí comhchosúla in: 5x^{2}+x+10x+2+4x+16.
\frac{5x^{2}+15x+18}{5x^{3}+x^{2}-80x-16}
Fairsingigh \left(x-4\right)\left(x+4\right)\left(5x+1\right)