Luacháil
\frac{x^{2}+5}{\left(x+5\right)\left(x^{2}-1\right)}
Fairsingigh
\frac{x^{2}+5}{\left(x+5\right)\left(x^{2}-1\right)}
Graf
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
\frac { x + 2 } { x ^ { 2 } + 4 x - 5 } - \frac { 3 } { x ^ { 2 } + 6 x + 5 }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{x+2}{\left(x-1\right)\left(x+5\right)}-\frac{3}{\left(x+1\right)\left(x+5\right)}
Fachtóirigh x^{2}+4x-5. Fachtóirigh x^{2}+6x+5.
\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}-\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-1\right)\left(x+5\right) agus \left(x+1\right)\left(x+5\right) ná \left(x-1\right)\left(x+1\right)\left(x+5\right). Méadaigh \frac{x+2}{\left(x-1\right)\left(x+5\right)} faoi \frac{x+1}{x+1}. Méadaigh \frac{3}{\left(x+1\right)\left(x+5\right)} faoi \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x+1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Tá an t-ainmneoir céanna ag \frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} agus \frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x^{2}+x+2x+2-3x+3}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Déan iolrúcháin in \left(x+2\right)\left(x+1\right)-3\left(x-1\right).
\frac{x^{2}+5}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Cumaisc téarmaí comhchosúla in: x^{2}+x+2x+2-3x+3.
\frac{x^{2}+5}{x^{3}+5x^{2}-x-5}
Fairsingigh \left(x-1\right)\left(x+1\right)\left(x+5\right)
\frac{x+2}{\left(x-1\right)\left(x+5\right)}-\frac{3}{\left(x+1\right)\left(x+5\right)}
Fachtóirigh x^{2}+4x-5. Fachtóirigh x^{2}+6x+5.
\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}-\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-1\right)\left(x+5\right) agus \left(x+1\right)\left(x+5\right) ná \left(x-1\right)\left(x+1\right)\left(x+5\right). Méadaigh \frac{x+2}{\left(x-1\right)\left(x+5\right)} faoi \frac{x+1}{x+1}. Méadaigh \frac{3}{\left(x+1\right)\left(x+5\right)} faoi \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x+1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Tá an t-ainmneoir céanna ag \frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} agus \frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x^{2}+x+2x+2-3x+3}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Déan iolrúcháin in \left(x+2\right)\left(x+1\right)-3\left(x-1\right).
\frac{x^{2}+5}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Cumaisc téarmaí comhchosúla in: x^{2}+x+2x+2-3x+3.
\frac{x^{2}+5}{x^{3}+5x^{2}-x-5}
Fairsingigh \left(x-1\right)\left(x+1\right)\left(x+5\right)
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}