Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{x+2}{\left(x-1\right)\left(x+5\right)}-\frac{3}{\left(x+1\right)\left(x+5\right)}
Fachtóirigh x^{2}+4x-5. Fachtóirigh x^{2}+6x+5.
\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}-\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-1\right)\left(x+5\right) agus \left(x+1\right)\left(x+5\right) ná \left(x-1\right)\left(x+1\right)\left(x+5\right). Méadaigh \frac{x+2}{\left(x-1\right)\left(x+5\right)} faoi \frac{x+1}{x+1}. Méadaigh \frac{3}{\left(x+1\right)\left(x+5\right)} faoi \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x+1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Tá an t-ainmneoir céanna ag \frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} agus \frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x^{2}+x+2x+2-3x+3}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Déan iolrúcháin in \left(x+2\right)\left(x+1\right)-3\left(x-1\right).
\frac{x^{2}+5}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Cumaisc téarmaí comhchosúla in: x^{2}+x+2x+2-3x+3.
\frac{x^{2}+5}{x^{3}+5x^{2}-x-5}
Fairsingigh \left(x-1\right)\left(x+1\right)\left(x+5\right)
\frac{x+2}{\left(x-1\right)\left(x+5\right)}-\frac{3}{\left(x+1\right)\left(x+5\right)}
Fachtóirigh x^{2}+4x-5. Fachtóirigh x^{2}+6x+5.
\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}-\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-1\right)\left(x+5\right) agus \left(x+1\right)\left(x+5\right) ná \left(x-1\right)\left(x+1\right)\left(x+5\right). Méadaigh \frac{x+2}{\left(x-1\right)\left(x+5\right)} faoi \frac{x+1}{x+1}. Méadaigh \frac{3}{\left(x+1\right)\left(x+5\right)} faoi \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x+1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Tá an t-ainmneoir céanna ag \frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} agus \frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x^{2}+x+2x+2-3x+3}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Déan iolrúcháin in \left(x+2\right)\left(x+1\right)-3\left(x-1\right).
\frac{x^{2}+5}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Cumaisc téarmaí comhchosúla in: x^{2}+x+2x+2-3x+3.
\frac{x^{2}+5}{x^{3}+5x^{2}-x-5}
Fairsingigh \left(x-1\right)\left(x+1\right)\left(x+5\right)