Luacháil
\frac{x^{2}}{\left(x+1\right)\left(x+2\right)}
Fairsingigh
\frac{x^{2}}{\left(x+1\right)\left(x+2\right)}
Graf
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
\frac { x + 2 } { x + 1 } + \frac { x + 1 } { x + 2 } - \frac { x + 5 } { x + 2 } =
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+1 agus x+2 ná \left(x+1\right)\left(x+2\right). Méadaigh \frac{x+2}{x+1} faoi \frac{x+2}{x+2}. Méadaigh \frac{x+1}{x+2} faoi \frac{x+1}{x+1}.
\frac{\left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Tá an t-ainmneoir céanna ag \frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} agus \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{2}+2x+2x+4+x^{2}+x+x+1}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Déan iolrúcháin in \left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right).
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Cumaisc téarmaí comhchosúla in: x^{2}+2x+2x+4+x^{2}+x+x+1.
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+1\right)\left(x+2\right) agus x+2 ná \left(x+1\right)\left(x+2\right). Méadaigh \frac{x+5}{x+2} faoi \frac{x+1}{x+1}.
\frac{2x^{2}+6x+5-\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Tá an t-ainmneoir céanna ag \frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)} agus \frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{2x^{2}+6x+5-x^{2}-x-5x-5}{\left(x+1\right)\left(x+2\right)}
Déan iolrúcháin in 2x^{2}+6x+5-\left(x+5\right)\left(x+1\right).
\frac{x^{2}}{\left(x+1\right)\left(x+2\right)}
Cumaisc téarmaí comhchosúla in: 2x^{2}+6x+5-x^{2}-x-5x-5.
\frac{x^{2}}{x^{2}+3x+2}
Fairsingigh \left(x+1\right)\left(x+2\right)
\frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+1 agus x+2 ná \left(x+1\right)\left(x+2\right). Méadaigh \frac{x+2}{x+1} faoi \frac{x+2}{x+2}. Méadaigh \frac{x+1}{x+2} faoi \frac{x+1}{x+1}.
\frac{\left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Tá an t-ainmneoir céanna ag \frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} agus \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{2}+2x+2x+4+x^{2}+x+x+1}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Déan iolrúcháin in \left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right).
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Cumaisc téarmaí comhchosúla in: x^{2}+2x+2x+4+x^{2}+x+x+1.
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+1\right)\left(x+2\right) agus x+2 ná \left(x+1\right)\left(x+2\right). Méadaigh \frac{x+5}{x+2} faoi \frac{x+1}{x+1}.
\frac{2x^{2}+6x+5-\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Tá an t-ainmneoir céanna ag \frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)} agus \frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{2x^{2}+6x+5-x^{2}-x-5x-5}{\left(x+1\right)\left(x+2\right)}
Déan iolrúcháin in 2x^{2}+6x+5-\left(x+5\right)\left(x+1\right).
\frac{x^{2}}{\left(x+1\right)\left(x+2\right)}
Cumaisc téarmaí comhchosúla in: 2x^{2}+6x+5-x^{2}-x-5x-5.
\frac{x^{2}}{x^{2}+3x+2}
Fairsingigh \left(x+1\right)\left(x+2\right)
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}