Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+1 agus x+2 ná \left(x+1\right)\left(x+2\right). Méadaigh \frac{x+2}{x+1} faoi \frac{x+2}{x+2}. Méadaigh \frac{x+1}{x+2} faoi \frac{x+1}{x+1}.
\frac{\left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Tá an t-ainmneoir céanna ag \frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} agus \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{2}+2x+2x+4+x^{2}+x+x+1}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Déan iolrúcháin in \left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right).
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Cumaisc téarmaí comhchosúla in: x^{2}+2x+2x+4+x^{2}+x+x+1.
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+1\right)\left(x+2\right) agus x+2 ná \left(x+1\right)\left(x+2\right). Méadaigh \frac{x+5}{x+2} faoi \frac{x+1}{x+1}.
\frac{2x^{2}+6x+5-\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Tá an t-ainmneoir céanna ag \frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)} agus \frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{2x^{2}+6x+5-x^{2}-x-5x-5}{\left(x+1\right)\left(x+2\right)}
Déan iolrúcháin in 2x^{2}+6x+5-\left(x+5\right)\left(x+1\right).
\frac{x^{2}}{\left(x+1\right)\left(x+2\right)}
Cumaisc téarmaí comhchosúla in: 2x^{2}+6x+5-x^{2}-x-5x-5.
\frac{x^{2}}{x^{2}+3x+2}
Fairsingigh \left(x+1\right)\left(x+2\right)
\frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+1 agus x+2 ná \left(x+1\right)\left(x+2\right). Méadaigh \frac{x+2}{x+1} faoi \frac{x+2}{x+2}. Méadaigh \frac{x+1}{x+2} faoi \frac{x+1}{x+1}.
\frac{\left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Tá an t-ainmneoir céanna ag \frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} agus \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{2}+2x+2x+4+x^{2}+x+x+1}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Déan iolrúcháin in \left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right).
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Cumaisc téarmaí comhchosúla in: x^{2}+2x+2x+4+x^{2}+x+x+1.
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+1\right)\left(x+2\right) agus x+2 ná \left(x+1\right)\left(x+2\right). Méadaigh \frac{x+5}{x+2} faoi \frac{x+1}{x+1}.
\frac{2x^{2}+6x+5-\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Tá an t-ainmneoir céanna ag \frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)} agus \frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{2x^{2}+6x+5-x^{2}-x-5x-5}{\left(x+1\right)\left(x+2\right)}
Déan iolrúcháin in 2x^{2}+6x+5-\left(x+5\right)\left(x+1\right).
\frac{x^{2}}{\left(x+1\right)\left(x+2\right)}
Cumaisc téarmaí comhchosúla in: 2x^{2}+6x+5-x^{2}-x-5x-5.
\frac{x^{2}}{x^{2}+3x+2}
Fairsingigh \left(x+1\right)\left(x+2\right)