Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{x+1}{4\left(x-1\right)}+\frac{x+1}{\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Fachtóirigh 4x-4. Fachtóirigh x^{2}-4x+3.
\frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}+\frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 4\left(x-1\right) agus \left(x-3\right)\left(x-1\right) ná 4\left(x-3\right)\left(x-1\right). Méadaigh \frac{x+1}{4\left(x-1\right)} faoi \frac{x-3}{x-3}. Méadaigh \frac{x+1}{\left(x-3\right)\left(x-1\right)} faoi \frac{4}{4}.
\frac{\left(x+1\right)\left(x-3\right)+4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Tá an t-ainmneoir céanna ag \frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} agus \frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{2}-3x+x-3+4x+4}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Déan iolrúcháin in \left(x+1\right)\left(x-3\right)+4\left(x+1\right).
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Cumaisc téarmaí comhchosúla in: x^{2}-3x+x-3+4x+4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4\left(x-1\right)}
Fachtóirigh 4x-4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 4\left(x-3\right)\left(x-1\right) agus 4\left(x-1\right) ná 4\left(x-3\right)\left(x-1\right). Méadaigh \frac{x-3}{4\left(x-1\right)} faoi \frac{x-3}{x-3}.
\frac{x^{2}+2x+1-\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Tá an t-ainmneoir céanna ag \frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)} agus \frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x^{2}+2x+1-x^{2}+3x+3x-9}{4\left(x-3\right)\left(x-1\right)}
Déan iolrúcháin in x^{2}+2x+1-\left(x-3\right)\left(x-3\right).
\frac{8x-8}{4\left(x-3\right)\left(x-1\right)}
Cumaisc téarmaí comhchosúla in: x^{2}+2x+1-x^{2}+3x+3x-9.
\frac{8\left(x-1\right)}{4\left(x-3\right)\left(x-1\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{8x-8}{4\left(x-3\right)\left(x-1\right)}.
\frac{2}{x-3}
Cealaigh 4\left(x-1\right) mar uimhreoir agus ainmneoir.
\frac{x+1}{4\left(x-1\right)}+\frac{x+1}{\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Fachtóirigh 4x-4. Fachtóirigh x^{2}-4x+3.
\frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}+\frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 4\left(x-1\right) agus \left(x-3\right)\left(x-1\right) ná 4\left(x-3\right)\left(x-1\right). Méadaigh \frac{x+1}{4\left(x-1\right)} faoi \frac{x-3}{x-3}. Méadaigh \frac{x+1}{\left(x-3\right)\left(x-1\right)} faoi \frac{4}{4}.
\frac{\left(x+1\right)\left(x-3\right)+4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Tá an t-ainmneoir céanna ag \frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} agus \frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{2}-3x+x-3+4x+4}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Déan iolrúcháin in \left(x+1\right)\left(x-3\right)+4\left(x+1\right).
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Cumaisc téarmaí comhchosúla in: x^{2}-3x+x-3+4x+4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4\left(x-1\right)}
Fachtóirigh 4x-4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 4\left(x-3\right)\left(x-1\right) agus 4\left(x-1\right) ná 4\left(x-3\right)\left(x-1\right). Méadaigh \frac{x-3}{4\left(x-1\right)} faoi \frac{x-3}{x-3}.
\frac{x^{2}+2x+1-\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Tá an t-ainmneoir céanna ag \frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)} agus \frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x^{2}+2x+1-x^{2}+3x+3x-9}{4\left(x-3\right)\left(x-1\right)}
Déan iolrúcháin in x^{2}+2x+1-\left(x-3\right)\left(x-3\right).
\frac{8x-8}{4\left(x-3\right)\left(x-1\right)}
Cumaisc téarmaí comhchosúla in: x^{2}+2x+1-x^{2}+3x+3x-9.
\frac{8\left(x-1\right)}{4\left(x-3\right)\left(x-1\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{8x-8}{4\left(x-3\right)\left(x-1\right)}.
\frac{2}{x-3}
Cealaigh 4\left(x-1\right) mar uimhreoir agus ainmneoir.