Luacháil
\frac{2r+7}{r\left(r+2\right)\left(r+3\right)}
Fairsingigh
\frac{2r+7}{r\left(r+2\right)\left(r+3\right)}
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
\frac { r + 2 } { r ( r + 3 ) } - \frac { r - 1 } { r ( r + 2 ) }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\left(r+2\right)\left(r+2\right)}{r\left(r+2\right)\left(r+3\right)}-\frac{\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de r\left(r+3\right) agus r\left(r+2\right) ná r\left(r+2\right)\left(r+3\right). Méadaigh \frac{r+2}{r\left(r+3\right)} faoi \frac{r+2}{r+2}. Méadaigh \frac{r-1}{r\left(r+2\right)} faoi \frac{r+3}{r+3}.
\frac{\left(r+2\right)\left(r+2\right)-\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)}
Tá an t-ainmneoir céanna ag \frac{\left(r+2\right)\left(r+2\right)}{r\left(r+2\right)\left(r+3\right)} agus \frac{\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{r^{2}+2r+2r+4-r^{2}-3r+r+3}{r\left(r+2\right)\left(r+3\right)}
Déan iolrúcháin in \left(r+2\right)\left(r+2\right)-\left(r-1\right)\left(r+3\right).
\frac{2r+7}{r\left(r+2\right)\left(r+3\right)}
Cumaisc téarmaí comhchosúla in: r^{2}+2r+2r+4-r^{2}-3r+r+3.
\frac{2r+7}{r^{3}+5r^{2}+6r}
Fairsingigh r\left(r+2\right)\left(r+3\right)
\frac{\left(r+2\right)\left(r+2\right)}{r\left(r+2\right)\left(r+3\right)}-\frac{\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de r\left(r+3\right) agus r\left(r+2\right) ná r\left(r+2\right)\left(r+3\right). Méadaigh \frac{r+2}{r\left(r+3\right)} faoi \frac{r+2}{r+2}. Méadaigh \frac{r-1}{r\left(r+2\right)} faoi \frac{r+3}{r+3}.
\frac{\left(r+2\right)\left(r+2\right)-\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)}
Tá an t-ainmneoir céanna ag \frac{\left(r+2\right)\left(r+2\right)}{r\left(r+2\right)\left(r+3\right)} agus \frac{\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{r^{2}+2r+2r+4-r^{2}-3r+r+3}{r\left(r+2\right)\left(r+3\right)}
Déan iolrúcháin in \left(r+2\right)\left(r+2\right)-\left(r-1\right)\left(r+3\right).
\frac{2r+7}{r\left(r+2\right)\left(r+3\right)}
Cumaisc téarmaí comhchosúla in: r^{2}+2r+2r+4-r^{2}-3r+r+3.
\frac{2r+7}{r^{3}+5r^{2}+6r}
Fairsingigh r\left(r+2\right)\left(r+3\right)
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}