Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image

Roinn

\frac{\frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)}}{\frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}}}
Méadaigh \frac{p-q}{p+q} faoi \frac{p^{2}-q^{2}}{2p-q} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
\frac{\left(p-q\right)\left(p^{2}-q^{2}\right)\left(4p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)\left(p^{2}-2pq+q^{2}\right)}
Roinn \frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)} faoi \frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}} trí \frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)} a mhéadú faoi dheilín \frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}}.
\frac{\left(p+q\right)\left(2p+q\right)\left(2p-q\right)\left(p-q\right)^{2}}{\left(p+q\right)\left(2p-q\right)\left(p-q\right)^{2}}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana.
2p+q
Cealaigh \left(p+q\right)\left(2p-q\right)\left(p-q\right)^{2} mar uimhreoir agus ainmneoir.
\frac{\frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)}}{\frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}}}
Méadaigh \frac{p-q}{p+q} faoi \frac{p^{2}-q^{2}}{2p-q} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
\frac{\left(p-q\right)\left(p^{2}-q^{2}\right)\left(4p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)\left(p^{2}-2pq+q^{2}\right)}
Roinn \frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)} faoi \frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}} trí \frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)} a mhéadú faoi dheilín \frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}}.
\frac{\left(p+q\right)\left(2p+q\right)\left(2p-q\right)\left(p-q\right)^{2}}{\left(p+q\right)\left(2p-q\right)\left(p-q\right)^{2}}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana.
2p+q
Cealaigh \left(p+q\right)\left(2p-q\right)\left(p-q\right)^{2} mar uimhreoir agus ainmneoir.