Luacháil
\frac{p^{3}-12p+8}{\left(3p-4\right)\left(p^{2}-6\right)}
Difreálaigh w.r.t. p
\frac{4\left(-p^{4}+9p^{3}-12p^{2}+16p-36\right)}{\left(\left(3p-4\right)\left(p^{2}-6\right)\right)^{2}}
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{p}{3p-4}-\frac{2}{p^{2}-6}
Méadaigh p agus p chun p^{2} a fháil.
\frac{p\left(p^{2}-6\right)}{\left(3p-4\right)\left(p^{2}-6\right)}-\frac{2\left(3p-4\right)}{\left(3p-4\right)\left(p^{2}-6\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 3p-4 agus p^{2}-6 ná \left(3p-4\right)\left(p^{2}-6\right). Méadaigh \frac{p}{3p-4} faoi \frac{p^{2}-6}{p^{2}-6}. Méadaigh \frac{2}{p^{2}-6} faoi \frac{3p-4}{3p-4}.
\frac{p\left(p^{2}-6\right)-2\left(3p-4\right)}{\left(3p-4\right)\left(p^{2}-6\right)}
Tá an t-ainmneoir céanna ag \frac{p\left(p^{2}-6\right)}{\left(3p-4\right)\left(p^{2}-6\right)} agus \frac{2\left(3p-4\right)}{\left(3p-4\right)\left(p^{2}-6\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{p^{3}-6p-6p+8}{\left(3p-4\right)\left(p^{2}-6\right)}
Déan iolrúcháin in p\left(p^{2}-6\right)-2\left(3p-4\right).
\frac{p^{3}-12p+8}{\left(3p-4\right)\left(p^{2}-6\right)}
Cumaisc téarmaí comhchosúla in: p^{3}-6p-6p+8.
\frac{p^{3}-12p+8}{3p^{3}-4p^{2}-18p+24}
Fairsingigh \left(3p-4\right)\left(p^{2}-6\right)
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}