Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
Fachtóirigh b^{4}-1. Fachtóirigh 1-b^{4}.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) agus \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) ná \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). Méadaigh \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} faoi \frac{-1}{-1}.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Tá an t-ainmneoir céanna ag \frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} agus \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Déan iolrúcháin in b^{2}+2+3\left(-1\right).
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Cumaisc téarmaí comhchosúla in: b^{2}+2-3.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}.
\frac{1}{b^{2}+1}
Cealaigh \left(b-1\right)\left(b+1\right) mar uimhreoir agus ainmneoir.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
Fachtóirigh b^{4}-1. Fachtóirigh 1-b^{4}.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) agus \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) ná \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). Méadaigh \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} faoi \frac{-1}{-1}.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Tá an t-ainmneoir céanna ag \frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} agus \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Déan iolrúcháin in b^{2}+2+3\left(-1\right).
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Cumaisc téarmaí comhchosúla in: b^{2}+2-3.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}.
\frac{1}{b^{2}+1}
Cealaigh \left(b-1\right)\left(b+1\right) mar uimhreoir agus ainmneoir.