Luacháil
\frac{1}{b^{2}+1}
Fairsingigh
\frac{1}{b^{2}+1}
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
Fachtóirigh b^{4}-1. Fachtóirigh 1-b^{4}.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) agus \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) ná \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). Méadaigh \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} faoi \frac{-1}{-1}.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Tá an t-ainmneoir céanna ag \frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} agus \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Déan iolrúcháin in b^{2}+2+3\left(-1\right).
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Cumaisc téarmaí comhchosúla in: b^{2}+2-3.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}.
\frac{1}{b^{2}+1}
Cealaigh \left(b-1\right)\left(b+1\right) mar uimhreoir agus ainmneoir.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
Fachtóirigh b^{4}-1. Fachtóirigh 1-b^{4}.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) agus \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) ná \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). Méadaigh \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} faoi \frac{-1}{-1}.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Tá an t-ainmneoir céanna ag \frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} agus \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Déan iolrúcháin in b^{2}+2+3\left(-1\right).
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Cumaisc téarmaí comhchosúla in: b^{2}+2-3.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}.
\frac{1}{b^{2}+1}
Cealaigh \left(b-1\right)\left(b+1\right) mar uimhreoir agus ainmneoir.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}