Réitigh do a.
\left\{\begin{matrix}a=cp+\frac{np}{x}-b\text{, }&p\neq 0\text{ and }x\neq 0\\a\in \mathrm{R}\text{, }&x=0\text{ and }n=0\text{ and }p\neq 0\end{matrix}\right.
Réitigh do b.
\left\{\begin{matrix}b=cp+\frac{np}{x}-a\text{, }&p\neq 0\text{ and }x\neq 0\\b\in \mathrm{R}\text{, }&x=0\text{ and }n=0\text{ and }p\neq 0\end{matrix}\right.
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
ax+bx=pn+cxp
Méadaigh an dá thaobh den chothromóid faoi p.
ax=pn+cxp-bx
Bain bx ón dá thaobh.
xa=cpx-bx+np
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{xa}{x}=\frac{cpx-bx+np}{x}
Roinn an dá thaobh faoi x.
a=\frac{cpx-bx+np}{x}
Má roinntear é faoi x cuirtear an iolrúchán faoi x ar ceal.
a=cp+\frac{np}{x}-b
Roinn pn+cxp-bx faoi x.
ax+bx=pn+cxp
Méadaigh an dá thaobh den chothromóid faoi p.
bx=pn+cxp-ax
Bain ax ón dá thaobh.
xb=cpx-ax+np
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{xb}{x}=\frac{cpx-ax+np}{x}
Roinn an dá thaobh faoi x.
b=\frac{cpx-ax+np}{x}
Má roinntear é faoi x cuirtear an iolrúchán faoi x ar ceal.
b=cp+\frac{np}{x}-a
Roinn pn+cxp-ax faoi x.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}