Scipeáil chuig an bpríomhábhar
Réitigh do a. (complex solution)
Tick mark Image
Réitigh do a.
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

a-y+ax^{2}y=ax^{2}\left(\cos(x)\right)^{2}
Ní féidir leis an athróg a a bheith comhionann le 0 toisc nach bhfuil an roinnt faoi nialas sainithe. Méadaigh an dá thaobh den chothromóid faoi ax^{2}.
a-y+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=0
Bain ax^{2}\left(\cos(x)\right)^{2} ón dá thaobh.
a+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=y
Cuir y leis an dá thaobh. Is ionann rud ar bith móide nialas agus a shuim féin.
\left(1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}\right)a=y
Comhcheangail na téarmaí ar fad ina bhfuil a.
\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a=y
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Roinn an dá thaobh faoi 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Má roinntear é faoi 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} cuirtear an iolrúchán faoi 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} ar ceal.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}
Roinn y faoi 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}\text{, }a\neq 0
Ní féidir leis an athróg a a bheith comhionann le 0.
a-y+ax^{2}y=ax^{2}\left(\cos(x)\right)^{2}
Ní féidir leis an athróg a a bheith comhionann le 0 toisc nach bhfuil an roinnt faoi nialas sainithe. Méadaigh an dá thaobh den chothromóid faoi ax^{2}.
a-y+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=0
Bain ax^{2}\left(\cos(x)\right)^{2} ón dá thaobh.
a+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=y
Cuir y leis an dá thaobh. Is ionann rud ar bith móide nialas agus a shuim féin.
\left(1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}\right)a=y
Comhcheangail na téarmaí ar fad ina bhfuil a.
\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a=y
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Roinn an dá thaobh faoi 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Má roinntear é faoi 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} cuirtear an iolrúchán faoi 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} ar ceal.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}
Roinn y faoi 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}\text{, }a\neq 0
Ní féidir leis an athróg a a bheith comhionann le 0.