Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fachtóirigh
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{a}{\left(a-1\right)\left(-a-1\right)}+\frac{a}{1+a^{2}}
Fachtóirigh 1-a^{2}.
\frac{a\left(a^{2}+1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}+\frac{a\left(a-1\right)\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(a-1\right)\left(-a-1\right) agus 1+a^{2} ná \left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right). Méadaigh \frac{a}{\left(a-1\right)\left(-a-1\right)} faoi \frac{a^{2}+1}{a^{2}+1}. Méadaigh \frac{a}{1+a^{2}} faoi \frac{\left(a-1\right)\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)}.
\frac{a\left(a^{2}+1\right)+a\left(a-1\right)\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}
Tá an t-ainmneoir céanna ag \frac{a\left(a^{2}+1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)} agus \frac{a\left(a-1\right)\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{a^{3}+a-a^{3}-a^{2}+a^{2}+a}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}
Déan iolrúcháin in a\left(a^{2}+1\right)+a\left(a-1\right)\left(-a-1\right).
\frac{2a}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}
Cumaisc téarmaí comhchosúla in: a^{3}+a-a^{3}-a^{2}+a^{2}+a.
\frac{2a}{-a^{4}+1}
Fairsingigh \left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)