Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. a
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de a-1 agus a+1 ná \left(a-1\right)\left(a+1\right). Méadaigh \frac{a^{5}}{a-1} faoi \frac{a+1}{a+1}. Méadaigh \frac{a^{2}}{a+1} faoi \frac{a-1}{a-1}.
\frac{a^{5}\left(a+1\right)-a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
Tá an t-ainmneoir céanna ag \frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} agus \frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
Déan iolrúcháin in a^{5}\left(a+1\right)-a^{2}\left(a-1\right).
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(a-1\right)\left(a+1\right) agus a-1 ná \left(a-1\right)\left(a+1\right). Méadaigh \frac{1}{a-1} faoi \frac{a+1}{a+1}.
\frac{a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Tá an t-ainmneoir céanna ag \frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)} agus \frac{a+1}{\left(a-1\right)\left(a+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Déan iolrúcháin in a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right).
\frac{\left(a-1\right)\left(a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1}+\frac{1}{a+1}
Cealaigh a-1 mar uimhreoir agus ainmneoir.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1}{a+1}
Tá an t-ainmneoir céanna ag \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1} agus \frac{1}{a+1} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}
Cumaisc téarmaí comhchosúla in: a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1.
\frac{\left(a+1\right)\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)}{a+1}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}.
\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)
Cealaigh a+1 mar uimhreoir agus ainmneoir.
a^{4}+a^{3}+a^{2}+2
Fairsingigh an slonn.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de a-1 agus a+1 ná \left(a-1\right)\left(a+1\right). Méadaigh \frac{a^{5}}{a-1} faoi \frac{a+1}{a+1}. Méadaigh \frac{a^{2}}{a+1} faoi \frac{a-1}{a-1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}\left(a+1\right)-a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
Tá an t-ainmneoir céanna ag \frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} agus \frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
Déan iolrúcháin in a^{5}\left(a+1\right)-a^{2}\left(a-1\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(a-1\right)\left(a+1\right) agus a-1 ná \left(a-1\right)\left(a+1\right). Méadaigh \frac{1}{a-1} faoi \frac{a+1}{a+1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Tá an t-ainmneoir céanna ag \frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)} agus \frac{a+1}{\left(a-1\right)\left(a+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Déan iolrúcháin in a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-1\right)\left(a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1}+\frac{1}{a+1})
Cealaigh a-1 mar uimhreoir agus ainmneoir.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1}{a+1})
Tá an t-ainmneoir céanna ag \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1} agus \frac{1}{a+1} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1})
Cumaisc téarmaí comhchosúla in: a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a+1\right)\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)}{a+1})
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right))
Cealaigh a+1 mar uimhreoir agus ainmneoir.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{4}+a^{3}+a^{2}+2)
Fairsingigh an slonn.
4a^{4-1}+3a^{3-1}+2a^{2-1}
Is ionann díorthach iltéarmaigh agus suim dhíorthaigh a théarmaí. Is ionann díorthach téarma thairisigh agus 0. Is ionann díorthach ax^{n} agus nax^{n-1}.
4a^{3}+3a^{3-1}+2a^{2-1}
Dealaigh 1 ó 4.
4a^{3}+3a^{2}+2a^{2-1}
Dealaigh 1 ó 3.
4a^{3}+3a^{2}+2a^{1}
Dealaigh 1 ó 2.
4a^{3}+3a^{2}+2a
Do théarma ar bith t, t^{1}=t.