Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{9yv}{\left(y+v\right)\left(y-v\right)}+\frac{y-v}{y+v}
Fachtóirigh y^{2}-v^{2}.
\frac{9yv}{\left(y+v\right)\left(y-v\right)}+\frac{\left(y-v\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(y+v\right)\left(y-v\right) agus y+v ná \left(y+v\right)\left(y-v\right). Méadaigh \frac{y-v}{y+v} faoi \frac{y-v}{y-v}.
\frac{9yv+\left(y-v\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}
Tá an t-ainmneoir céanna ag \frac{9yv}{\left(y+v\right)\left(y-v\right)} agus \frac{\left(y-v\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{9yv+y^{2}-yv-yv+v^{2}}{\left(y+v\right)\left(y-v\right)}
Déan iolrúcháin in 9yv+\left(y-v\right)\left(y-v\right).
\frac{v^{2}+7yv+y^{2}}{\left(y+v\right)\left(y-v\right)}
Cumaisc téarmaí comhchosúla in: 9yv+y^{2}-yv-yv+v^{2}.
\frac{v^{2}+7yv+y^{2}}{y^{2}-v^{2}}
Fairsingigh \left(y+v\right)\left(y-v\right)
\frac{9yv}{\left(y+v\right)\left(y-v\right)}+\frac{y-v}{y+v}
Fachtóirigh y^{2}-v^{2}.
\frac{9yv}{\left(y+v\right)\left(y-v\right)}+\frac{\left(y-v\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(y+v\right)\left(y-v\right) agus y+v ná \left(y+v\right)\left(y-v\right). Méadaigh \frac{y-v}{y+v} faoi \frac{y-v}{y-v}.
\frac{9yv+\left(y-v\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}
Tá an t-ainmneoir céanna ag \frac{9yv}{\left(y+v\right)\left(y-v\right)} agus \frac{\left(y-v\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{9yv+y^{2}-yv-yv+v^{2}}{\left(y+v\right)\left(y-v\right)}
Déan iolrúcháin in 9yv+\left(y-v\right)\left(y-v\right).
\frac{v^{2}+7yv+y^{2}}{\left(y+v\right)\left(y-v\right)}
Cumaisc téarmaí comhchosúla in: 9yv+y^{2}-yv-yv+v^{2}.
\frac{v^{2}+7yv+y^{2}}{y^{2}-v^{2}}
Fairsingigh \left(y+v\right)\left(y-v\right)