Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image

Roinn

\frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Roinn \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} faoi \frac{6x+10y}{5x-25y} trí \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} a mhéadú faoi dheilín \frac{6x+10y}{5x-25y}.
\frac{5\left(x-5y\right)\left(3x-5y\right)\left(3x+5y\right)}{2\left(3x-5y\right)\left(3x+5y\right)\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}.
\frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Cealaigh \left(3x-5y\right)\left(3x+5y\right) mar uimhreoir agus ainmneoir.
\frac{5\left(x-5y\right)\left(9x^{2}+15xy+25y^{2}\right)}{2\left(9x^{2}+15xy+25y^{2}\right)\left(9x^{2}-18xy+5y^{2}\right)}
Méadaigh \frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)} faoi \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
\frac{5\left(x-5y\right)}{2\left(9x^{2}-18xy+5y^{2}\right)}
Cealaigh 9x^{2}+15xy+25y^{2} mar uimhreoir agus ainmneoir.
\frac{5x-25y}{2\left(9x^{2}-18xy+5y^{2}\right)}
Úsáid an t-airí dáileach chun 5 a mhéadú faoi x-5y.
\frac{5x-25y}{18x^{2}-36xy+10y^{2}}
Úsáid an t-airí dáileach chun 2 a mhéadú faoi 9x^{2}-18xy+5y^{2}.
\frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Roinn \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} faoi \frac{6x+10y}{5x-25y} trí \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} a mhéadú faoi dheilín \frac{6x+10y}{5x-25y}.
\frac{5\left(x-5y\right)\left(3x-5y\right)\left(3x+5y\right)}{2\left(3x-5y\right)\left(3x+5y\right)\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}.
\frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Cealaigh \left(3x-5y\right)\left(3x+5y\right) mar uimhreoir agus ainmneoir.
\frac{5\left(x-5y\right)\left(9x^{2}+15xy+25y^{2}\right)}{2\left(9x^{2}+15xy+25y^{2}\right)\left(9x^{2}-18xy+5y^{2}\right)}
Méadaigh \frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)} faoi \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
\frac{5\left(x-5y\right)}{2\left(9x^{2}-18xy+5y^{2}\right)}
Cealaigh 9x^{2}+15xy+25y^{2} mar uimhreoir agus ainmneoir.
\frac{5x-25y}{2\left(9x^{2}-18xy+5y^{2}\right)}
Úsáid an t-airí dáileach chun 5 a mhéadú faoi x-5y.
\frac{5x-25y}{18x^{2}-36xy+10y^{2}}
Úsáid an t-airí dáileach chun 2 a mhéadú faoi 9x^{2}-18xy+5y^{2}.