\frac { 8 - 02 d t } { 1 + t } = 175 d \theta
Réitigh do d.
d=\frac{8}{175t\theta +2t+175\theta }
\left(\theta =-\frac{2}{175}\text{ or }t\neq -\frac{175\theta }{175\theta +2}\right)\text{ and }t\neq -1
Réitigh do t.
\left\{\begin{matrix}t=\frac{8-175d\theta }{d\left(175\theta +2\right)}\text{, }&d\neq -4\text{ and }\theta \neq -\frac{2}{175}\text{ and }d\neq 0\\t\neq -1\text{, }&\theta =-\frac{2}{175}\text{ and }d=-4\end{matrix}\right.
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
8-2dt=175d\theta \left(t+1\right)
Méadaigh an dá thaobh den chothromóid faoi t+1.
8-2dt=175d\theta t+175d\theta
Úsáid an t-airí dáileach chun 175d\theta a mhéadú faoi t+1.
8-2dt-175d\theta t=175d\theta
Bain 175d\theta t ón dá thaobh.
8-2dt-175d\theta t-175d\theta =0
Bain 175d\theta ón dá thaobh.
-2dt-175d\theta t-175d\theta =-8
Bain 8 ón dá thaobh. Is ionann rud ar bith a dhealaítear ó nialas agus a shéanadh.
\left(-2t-175\theta t-175\theta \right)d=-8
Comhcheangail na téarmaí ar fad ina bhfuil d.
\left(-175t\theta -2t-175\theta \right)d=-8
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(-175t\theta -2t-175\theta \right)d}{-175t\theta -2t-175\theta }=-\frac{8}{-175t\theta -2t-175\theta }
Roinn an dá thaobh faoi -175t\theta -2t-175\theta .
d=-\frac{8}{-175t\theta -2t-175\theta }
Má roinntear é faoi -175t\theta -2t-175\theta cuirtear an iolrúchán faoi -175t\theta -2t-175\theta ar ceal.
d=\frac{8}{175t\theta +2t+175\theta }
Roinn -8 faoi -175t\theta -2t-175\theta .
8-2dt=175d\theta \left(t+1\right)
Ní féidir leis an athróg t a bheith comhionann le -1 toisc nach bhfuil an roinnt faoi nialas sainithe. Méadaigh an dá thaobh den chothromóid faoi t+1.
8-2dt=175d\theta t+175d\theta
Úsáid an t-airí dáileach chun 175d\theta a mhéadú faoi t+1.
8-2dt-175d\theta t=175d\theta
Bain 175d\theta t ón dá thaobh.
-2dt-175d\theta t=175d\theta -8
Bain 8 ón dá thaobh.
\left(-2d-175d\theta \right)t=175d\theta -8
Comhcheangail na téarmaí ar fad ina bhfuil t.
\left(-175d\theta -2d\right)t=175d\theta -8
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(-175d\theta -2d\right)t}{-175d\theta -2d}=\frac{175d\theta -8}{-175d\theta -2d}
Roinn an dá thaobh faoi -2d-175\theta d.
t=\frac{175d\theta -8}{-175d\theta -2d}
Má roinntear é faoi -2d-175\theta d cuirtear an iolrúchán faoi -2d-175\theta d ar ceal.
t=\frac{175d\theta -8}{-d\left(175\theta +2\right)}
Roinn 175d\theta -8 faoi -2d-175\theta d.
t=\frac{175d\theta -8}{-d\left(175\theta +2\right)}\text{, }t\neq -1
Ní féidir leis an athróg t a bheith comhionann le -1.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}