Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{7x+6}{\left(x-1\right)\left(x+1\right)}-\frac{x+6}{x-1}
Fachtóirigh x^{2}-1.
\frac{7x+6}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x+6\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-1\right)\left(x+1\right) agus x-1 ná \left(x-1\right)\left(x+1\right). Méadaigh \frac{x+6}{x-1} faoi \frac{x+1}{x+1}.
\frac{7x+6-\left(x+6\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Tá an t-ainmneoir céanna ag \frac{7x+6}{\left(x-1\right)\left(x+1\right)} agus \frac{\left(x+6\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{7x+6-x^{2}-x-6x-6}{\left(x-1\right)\left(x+1\right)}
Déan iolrúcháin in 7x+6-\left(x+6\right)\left(x+1\right).
\frac{-x^{2}}{\left(x-1\right)\left(x+1\right)}
Cumaisc téarmaí comhchosúla in: 7x+6-x^{2}-x-6x-6.
\frac{-x^{2}}{x^{2}-1}
Fairsingigh \left(x-1\right)\left(x+1\right)
\frac{7x+6}{\left(x-1\right)\left(x+1\right)}-\frac{x+6}{x-1}
Fachtóirigh x^{2}-1.
\frac{7x+6}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x+6\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-1\right)\left(x+1\right) agus x-1 ná \left(x-1\right)\left(x+1\right). Méadaigh \frac{x+6}{x-1} faoi \frac{x+1}{x+1}.
\frac{7x+6-\left(x+6\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Tá an t-ainmneoir céanna ag \frac{7x+6}{\left(x-1\right)\left(x+1\right)} agus \frac{\left(x+6\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{7x+6-x^{2}-x-6x-6}{\left(x-1\right)\left(x+1\right)}
Déan iolrúcháin in 7x+6-\left(x+6\right)\left(x+1\right).
\frac{-x^{2}}{\left(x-1\right)\left(x+1\right)}
Cumaisc téarmaí comhchosúla in: 7x+6-x^{2}-x-6x-6.
\frac{-x^{2}}{x^{2}-1}
Fairsingigh \left(x-1\right)\left(x+1\right)