Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. x
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{6x^{6}}{\left(x-3\right)\left(x-1\right)}-\frac{3}{3-x}-\frac{4}{x-1}
Fachtóirigh x^{2}-4x+3.
\frac{6x^{6}}{\left(x-3\right)\left(x-1\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-3\right)\left(x-1\right) agus 3-x ná \left(x-3\right)\left(x-1\right). Méadaigh \frac{3}{3-x} faoi \frac{-\left(x-1\right)}{-\left(x-1\right)}.
\frac{6x^{6}-3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Tá an t-ainmneoir céanna ag \frac{6x^{6}}{\left(x-3\right)\left(x-1\right)} agus \frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{6x^{6}+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Déan iolrúcháin in 6x^{6}-3\left(-1\right)\left(x-1\right).
\frac{6x^{6}+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-3\right)\left(x-1\right) agus x-1 ná \left(x-3\right)\left(x-1\right). Méadaigh \frac{4}{x-1} faoi \frac{x-3}{x-3}.
\frac{6x^{6}+3x-3-4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}
Tá an t-ainmneoir céanna ag \frac{6x^{6}+3x-3}{\left(x-3\right)\left(x-1\right)} agus \frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{6x^{6}+3x-3-4x+12}{\left(x-3\right)\left(x-1\right)}
Déan iolrúcháin in 6x^{6}+3x-3-4\left(x-3\right).
\frac{-x+6x^{6}+9}{\left(x-3\right)\left(x-1\right)}
Cumaisc téarmaí comhchosúla in: 6x^{6}+3x-3-4x+12.
\frac{-x+6x^{6}+9}{x^{2}-4x+3}
Fairsingigh \left(x-3\right)\left(x-1\right)