Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. x
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3}{x-7}+\frac{4}{x+3}
Fachtóirigh x^{2}-4x-21.
\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-7\right)\left(x+3\right) agus x-7 ná \left(x-7\right)\left(x+3\right). Méadaigh \frac{3}{x-7} faoi \frac{x+3}{x+3}.
\frac{5x-3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
Tá an t-ainmneoir céanna ag \frac{5x}{\left(x-7\right)\left(x+3\right)} agus \frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{5x-3x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
Déan iolrúcháin in 5x-3\left(x+3\right).
\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
Cumaisc téarmaí comhchosúla in: 5x-3x-9.
\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-7\right)\left(x+3\right) agus x+3 ná \left(x-7\right)\left(x+3\right). Méadaigh \frac{4}{x+3} faoi \frac{x-7}{x-7}.
\frac{2x-9+4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)}
Tá an t-ainmneoir céanna ag \frac{2x-9}{\left(x-7\right)\left(x+3\right)} agus \frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{2x-9+4x-28}{\left(x-7\right)\left(x+3\right)}
Déan iolrúcháin in 2x-9+4\left(x-7\right).
\frac{6x-37}{\left(x-7\right)\left(x+3\right)}
Cumaisc téarmaí comhchosúla in: 2x-9+4x-28.
\frac{6x-37}{x^{2}-4x-21}
Fairsingigh \left(x-7\right)\left(x+3\right)
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3}{x-7}+\frac{4}{x+3})
Fachtóirigh x^{2}-4x-21.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-7\right)\left(x+3\right) agus x-7 ná \left(x-7\right)\left(x+3\right). Méadaigh \frac{3}{x-7} faoi \frac{x+3}{x+3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
Tá an t-ainmneoir céanna ag \frac{5x}{\left(x-7\right)\left(x+3\right)} agus \frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-3x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
Déan iolrúcháin in 5x-3\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
Cumaisc téarmaí comhchosúla in: 5x-3x-9.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)})
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-7\right)\left(x+3\right) agus x+3 ná \left(x-7\right)\left(x+3\right). Méadaigh \frac{4}{x+3} faoi \frac{x-7}{x-7}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9+4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)})
Tá an t-ainmneoir céanna ag \frac{2x-9}{\left(x-7\right)\left(x+3\right)} agus \frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9+4x-28}{\left(x-7\right)\left(x+3\right)})
Déan iolrúcháin in 2x-9+4\left(x-7\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x-37}{\left(x-7\right)\left(x+3\right)})
Cumaisc téarmaí comhchosúla in: 2x-9+4x-28.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x-37}{x^{2}-4x-21})
Úsáid an t-airí dáileach chun x-7 a mhéadú faoi x+3 agus chun téarmaí comhchosúla a chumasc.
\frac{\left(x^{2}-4x^{1}-21\right)\frac{\mathrm{d}}{\mathrm{d}x}(6x^{1}-37)-\left(6x^{1}-37\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x^{1}-21)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Do dhá fheidhm indifreáilte ar bith, is ionann díorthach líon an dá fheidhme agus an t-ainmneoir méadaithe faoi dhíorthach an uimhreora lúide an t-uimhreoir méadaithe faoi dhíorthach an ainmneora, agus iad ar fad roinnte faoin ainmneoir cearnaithe.
\frac{\left(x^{2}-4x^{1}-21\right)\times 6x^{1-1}-\left(6x^{1}-37\right)\left(2x^{2-1}-4x^{1-1}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Is ionann díorthach iltéarmaigh agus suim dhíorthaigh a théarmaí. Is ionann díorthach téarma thairisigh agus 0. Is ionann díorthach ax^{n} agus nax^{n-1}.
\frac{\left(x^{2}-4x^{1}-21\right)\times 6x^{0}-\left(6x^{1}-37\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Simpligh.
\frac{x^{2}\times 6x^{0}-4x^{1}\times 6x^{0}-21\times 6x^{0}-\left(6x^{1}-37\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Méadaigh x^{2}-4x^{1}-21 faoi 6x^{0}.
\frac{x^{2}\times 6x^{0}-4x^{1}\times 6x^{0}-21\times 6x^{0}-\left(6x^{1}\times 2x^{1}+6x^{1}\left(-4\right)x^{0}-37\times 2x^{1}-37\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Méadaigh 6x^{1}-37 faoi 2x^{1}-4x^{0}.
\frac{6x^{2}-4\times 6x^{1}-21\times 6x^{0}-\left(6\times 2x^{1+1}+6\left(-4\right)x^{1}-37\times 2x^{1}-37\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Chun cumhachtaí an bhoinn chéanna a mhéadú, suimigh a n-easpónaint.
\frac{6x^{2}-24x^{1}-126x^{0}-\left(12x^{2}-24x^{1}-74x^{1}+148x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Simpligh.
\frac{-6x^{2}+74x^{1}-274x^{0}}{\left(x^{2}-4x^{1}-21\right)^{2}}
Cuir téarmaí cosúla le chéile.
\frac{-6x^{2}+74x-274x^{0}}{\left(x^{2}-4x-21\right)^{2}}
Do théarma ar bith t, t^{1}=t.
\frac{-6x^{2}+74x-274}{\left(x^{2}-4x-21\right)^{2}}
Do théarma ar bith t ach amháin 0, t^{0}=1.