Luacháil
\frac{32}{9}\approx 3.555555556
Fachtóirigh
\frac{2 ^ {5}}{3 ^ {2}} = 3\frac{5}{9} = 3.5555555555555554
Tráth na gCeist
Arithmetic
5 fadhbanna cosúil le:
\frac { 5 - \sqrt { 7 } } { 5 + \sqrt { 7 } } + \frac { 5 + \sqrt { 7 } } { 5 - \sqrt { 7 } }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{\left(5+\sqrt{7}\right)\left(5-\sqrt{7}\right)}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 5-\sqrt{7} chun ainmneoir \frac{5-\sqrt{7}}{5+\sqrt{7}} a thiontú in uimhir chóimheasta.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{5^{2}-\left(\sqrt{7}\right)^{2}}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Mar shampla \left(5+\sqrt{7}\right)\left(5-\sqrt{7}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{25-7}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Cearnóg 5. Cearnóg \sqrt{7}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Dealaigh 7 ó 25 chun 18 a fháil.
\frac{\left(5-\sqrt{7}\right)^{2}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Méadaigh 5-\sqrt{7} agus 5-\sqrt{7} chun \left(5-\sqrt{7}\right)^{2} a fháil.
\frac{25-10\sqrt{7}+\left(\sqrt{7}\right)^{2}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(5-\sqrt{7}\right)^{2} a leathnú.
\frac{25-10\sqrt{7}+7}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Is é 7 uimhir chearnach \sqrt{7}.
\frac{32-10\sqrt{7}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Suimigh 25 agus 7 chun 32 a fháil.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{\left(5-\sqrt{7}\right)\left(5+\sqrt{7}\right)}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 5+\sqrt{7} chun ainmneoir \frac{5+\sqrt{7}}{5-\sqrt{7}} a thiontú in uimhir chóimheasta.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{5^{2}-\left(\sqrt{7}\right)^{2}}
Mar shampla \left(5-\sqrt{7}\right)\left(5+\sqrt{7}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{25-7}
Cearnóg 5. Cearnóg \sqrt{7}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{18}
Dealaigh 7 ó 25 chun 18 a fháil.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)^{2}}{18}
Méadaigh 5+\sqrt{7} agus 5+\sqrt{7} chun \left(5+\sqrt{7}\right)^{2} a fháil.
\frac{32-10\sqrt{7}}{18}+\frac{25+10\sqrt{7}+\left(\sqrt{7}\right)^{2}}{18}
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(5+\sqrt{7}\right)^{2} a leathnú.
\frac{32-10\sqrt{7}}{18}+\frac{25+10\sqrt{7}+7}{18}
Is é 7 uimhir chearnach \sqrt{7}.
\frac{32-10\sqrt{7}}{18}+\frac{32+10\sqrt{7}}{18}
Suimigh 25 agus 7 chun 32 a fháil.
\frac{32-10\sqrt{7}+32+10\sqrt{7}}{18}
Tá an t-ainmneoir céanna ag \frac{32-10\sqrt{7}}{18} agus \frac{32+10\sqrt{7}}{18} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{64}{18}
Déan áirimh in 32-10\sqrt{7}+32+10\sqrt{7}.
\frac{32}{9}
Laghdaigh an codán \frac{64}{18} chuig na téarmaí is ísle trí 2 a bhaint agus a chealú.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}