Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{\left(3\sqrt{2}+2\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 3\sqrt{2}-2\sqrt{3} chun ainmneoir \frac{5\sqrt{2}+3\sqrt{3}}{3\sqrt{2}+2\sqrt{3}} a thiontú in uimhir chóimheasta.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}
Mar shampla \left(3\sqrt{2}+2\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}
Fairsingigh \left(3\sqrt{2}\right)^{2}
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{9\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}
Ríomh cumhacht 3 de 2 agus faigh 9.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{9\times 2-\left(2\sqrt{3}\right)^{2}}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{18-\left(2\sqrt{3}\right)^{2}}
Méadaigh 9 agus 2 chun 18 a fháil.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{18-2^{2}\left(\sqrt{3}\right)^{2}}
Fairsingigh \left(2\sqrt{3}\right)^{2}
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{18-4\left(\sqrt{3}\right)^{2}}
Ríomh cumhacht 2 de 2 agus faigh 4.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{18-4\times 3}
Is é 3 uimhir chearnach \sqrt{3}.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{18-12}
Méadaigh 4 agus 3 chun 12 a fháil.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{6}
Dealaigh 12 ó 18 chun 6 a fháil.
\frac{15\left(\sqrt{2}\right)^{2}-10\sqrt{3}\sqrt{2}+9\sqrt{3}\sqrt{2}-6\left(\sqrt{3}\right)^{2}}{6}
Cuir an t-airí dáileacháin i bhfeidhm trí gach téarma de 5\sqrt{2}+3\sqrt{3} a iolrú faoi gach téarma de 3\sqrt{2}-2\sqrt{3}.
\frac{15\times 2-10\sqrt{3}\sqrt{2}+9\sqrt{3}\sqrt{2}-6\left(\sqrt{3}\right)^{2}}{6}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{30-10\sqrt{3}\sqrt{2}+9\sqrt{3}\sqrt{2}-6\left(\sqrt{3}\right)^{2}}{6}
Méadaigh 15 agus 2 chun 30 a fháil.
\frac{30-10\sqrt{6}+9\sqrt{3}\sqrt{2}-6\left(\sqrt{3}\right)^{2}}{6}
Iolraigh na huimhreacha faoin bhfréamh cearnach chun \sqrt{3} agus \sqrt{2} a iolrú.
\frac{30-10\sqrt{6}+9\sqrt{6}-6\left(\sqrt{3}\right)^{2}}{6}
Iolraigh na huimhreacha faoin bhfréamh cearnach chun \sqrt{3} agus \sqrt{2} a iolrú.
\frac{30-\sqrt{6}-6\left(\sqrt{3}\right)^{2}}{6}
Comhcheangail -10\sqrt{6} agus 9\sqrt{6} chun -\sqrt{6} a fháil.
\frac{30-\sqrt{6}-6\times 3}{6}
Is é 3 uimhir chearnach \sqrt{3}.
\frac{30-\sqrt{6}-18}{6}
Méadaigh -6 agus 3 chun -18 a fháil.
\frac{12-\sqrt{6}}{6}
Dealaigh 18 ó 30 chun 12 a fháil.