Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{4y+9}{\left(y-4\right)\left(y+6\right)}+\frac{7}{\left(y-1\right)\left(y+6\right)}
Fachtóirigh y^{2}+2y-24. Fachtóirigh y^{2}+5y-6.
\frac{\left(4y+9\right)\left(y-1\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}+\frac{7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(y-4\right)\left(y+6\right) agus \left(y-1\right)\left(y+6\right) ná \left(y-4\right)\left(y-1\right)\left(y+6\right). Méadaigh \frac{4y+9}{\left(y-4\right)\left(y+6\right)} faoi \frac{y-1}{y-1}. Méadaigh \frac{7}{\left(y-1\right)\left(y+6\right)} faoi \frac{y-4}{y-4}.
\frac{\left(4y+9\right)\left(y-1\right)+7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Tá an t-ainmneoir céanna ag \frac{\left(4y+9\right)\left(y-1\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)} agus \frac{7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{4y^{2}-4y+9y-9+7y-28}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Déan iolrúcháin in \left(4y+9\right)\left(y-1\right)+7\left(y-4\right).
\frac{4y^{2}+12y-37}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Cumaisc téarmaí comhchosúla in: 4y^{2}-4y+9y-9+7y-28.
\frac{4y^{2}+12y-37}{y^{3}+y^{2}-26y+24}
Fairsingigh \left(y-4\right)\left(y-1\right)\left(y+6\right)
\frac{4y+9}{\left(y-4\right)\left(y+6\right)}+\frac{7}{\left(y-1\right)\left(y+6\right)}
Fachtóirigh y^{2}+2y-24. Fachtóirigh y^{2}+5y-6.
\frac{\left(4y+9\right)\left(y-1\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}+\frac{7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(y-4\right)\left(y+6\right) agus \left(y-1\right)\left(y+6\right) ná \left(y-4\right)\left(y-1\right)\left(y+6\right). Méadaigh \frac{4y+9}{\left(y-4\right)\left(y+6\right)} faoi \frac{y-1}{y-1}. Méadaigh \frac{7}{\left(y-1\right)\left(y+6\right)} faoi \frac{y-4}{y-4}.
\frac{\left(4y+9\right)\left(y-1\right)+7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Tá an t-ainmneoir céanna ag \frac{\left(4y+9\right)\left(y-1\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)} agus \frac{7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{4y^{2}-4y+9y-9+7y-28}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Déan iolrúcháin in \left(4y+9\right)\left(y-1\right)+7\left(y-4\right).
\frac{4y^{2}+12y-37}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Cumaisc téarmaí comhchosúla in: 4y^{2}-4y+9y-9+7y-28.
\frac{4y^{2}+12y-37}{y^{3}+y^{2}-26y+24}
Fairsingigh \left(y-4\right)\left(y-1\right)\left(y+6\right)