Réitigh do x_2.
x_{2}=-\frac{x_{1}^{2}}{8}+x_{1}+\frac{9}{8}
x_{1}\neq 9
Réitigh do x_1.
\left\{\begin{matrix}x_{1}=\sqrt{25-8x_{2}}+4\text{, }&x_{2}\neq 0\text{ and }x_{2}\leq \frac{25}{8}\\x_{1}=-\sqrt{25-8x_{2}}+4\text{, }&x_{2}\leq \frac{25}{8}\end{matrix}\right.
Tráth na gCeist
Algebra
5 fadhbanna cosúil le:
\frac { 4 } { 18 - 2 x _ { 1 } } [ ( 1 + x _ { 1 } ) ( 9 - x _ { 1 } ) - 8 x _ { 2 } ] = 0
Roinn
Cóipeáladh go dtí an ghearrthaisce
4\left(\left(1+x_{1}\right)\left(9-x_{1}\right)-8x_{2}\right)=0
Méadaigh an dá thaobh den chothromóid faoi 2\left(-x_{1}+9\right).
4\left(9+8x_{1}-x_{1}^{2}-8x_{2}\right)=0
Úsáid an t-airí dáileach chun 1+x_{1} a mhéadú faoi 9-x_{1} agus chun téarmaí comhchosúla a chumasc.
36+32x_{1}-4x_{1}^{2}-32x_{2}=0
Úsáid an t-airí dáileach chun 4 a mhéadú faoi 9+8x_{1}-x_{1}^{2}-8x_{2}.
32x_{1}-4x_{1}^{2}-32x_{2}=-36
Bain 36 ón dá thaobh. Is ionann rud ar bith a dhealaítear ó nialas agus a shéanadh.
-4x_{1}^{2}-32x_{2}=-36-32x_{1}
Bain 32x_{1} ón dá thaobh.
-32x_{2}=-36-32x_{1}+4x_{1}^{2}
Cuir 4x_{1}^{2} leis an dá thaobh.
-32x_{2}=4x_{1}^{2}-32x_{1}-36
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{-32x_{2}}{-32}=\frac{4\left(x_{1}-9\right)\left(x_{1}+1\right)}{-32}
Roinn an dá thaobh faoi -32.
x_{2}=\frac{4\left(x_{1}-9\right)\left(x_{1}+1\right)}{-32}
Má roinntear é faoi -32 cuirtear an iolrúchán faoi -32 ar ceal.
x_{2}=-\frac{\left(x_{1}-9\right)\left(x_{1}+1\right)}{8}
Roinn 4\left(-9+x_{1}\right)\left(1+x_{1}\right) faoi -32.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}