Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fachtóirigh
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right)}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 4+\sqrt{5} chun ainmneoir \frac{4+\sqrt{5}}{4-\sqrt{5}} a thiontú in uimhir chóimheasta.
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Mar shampla \left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{16-5}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Cearnóg 4. Cearnóg \sqrt{5}.
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Dealaigh 5 ó 16 chun 11 a fháil.
\frac{\left(4+\sqrt{5}\right)^{2}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Méadaigh 4+\sqrt{5} agus 4+\sqrt{5} chun \left(4+\sqrt{5}\right)^{2} a fháil.
\frac{16+8\sqrt{5}+\left(\sqrt{5}\right)^{2}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(4+\sqrt{5}\right)^{2} a leathnú.
\frac{16+8\sqrt{5}+5}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Is é 5 uimhir chearnach \sqrt{5}.
\frac{21+8\sqrt{5}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
Suimigh 16 agus 5 chun 21 a fháil.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 4-\sqrt{5} chun ainmneoir \frac{4-\sqrt{5}}{4+\sqrt{5}} a thiontú in uimhir chóimheasta.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}
Mar shampla \left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{16-5}
Cearnóg 4. Cearnóg \sqrt{5}.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{11}
Dealaigh 5 ó 16 chun 11 a fháil.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)^{2}}{11}
Méadaigh 4-\sqrt{5} agus 4-\sqrt{5} chun \left(4-\sqrt{5}\right)^{2} a fháil.
\frac{21+8\sqrt{5}}{11}+\frac{16-8\sqrt{5}+\left(\sqrt{5}\right)^{2}}{11}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(4-\sqrt{5}\right)^{2} a leathnú.
\frac{21+8\sqrt{5}}{11}+\frac{16-8\sqrt{5}+5}{11}
Is é 5 uimhir chearnach \sqrt{5}.
\frac{21+8\sqrt{5}}{11}+\frac{21-8\sqrt{5}}{11}
Suimigh 16 agus 5 chun 21 a fháil.
\frac{21+8\sqrt{5}+21-8\sqrt{5}}{11}
Tá an t-ainmneoir céanna ag \frac{21+8\sqrt{5}}{11} agus \frac{21-8\sqrt{5}}{11} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{42}{11}
Déan áirimh in 21+8\sqrt{5}+21-8\sqrt{5}.