Luacháil
15\sqrt{5}+19\sqrt{2}\approx 60.411077348
Fachtóirigh
15 \sqrt{5} + 19 \sqrt{2} = 60.411077348
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{\left(2\sqrt{10}-3\right)\left(2\sqrt{10}+3\right)}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 2\sqrt{10}+3 chun ainmneoir \frac{31\sqrt{2}+31\sqrt{5}}{2\sqrt{10}-3} a thiontú in uimhir chóimheasta.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{\left(2\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Mar shampla \left(2\sqrt{10}-3\right)\left(2\sqrt{10}+3\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{2^{2}\left(\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Fairsingigh \left(2\sqrt{10}\right)^{2}
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{4\left(\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Ríomh cumhacht 2 de 2 agus faigh 4.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{4\times 10-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Is é 10 uimhir chearnach \sqrt{10}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{40-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Méadaigh 4 agus 10 chun 40 a fháil.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{40-9}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Ríomh cumhacht 3 de 2 agus faigh 9.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Dealaigh 9 ó 40 chun 31 a fháil.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{\left(3-2\sqrt{10}\right)\left(3+2\sqrt{10}\right)}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 3+2\sqrt{10} chun ainmneoir \frac{62\sqrt{2}}{3-2\sqrt{10}} a thiontú in uimhir chóimheasta.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{3^{2}-\left(-2\sqrt{10}\right)^{2}}
Mar shampla \left(3-2\sqrt{10}\right)\left(3+2\sqrt{10}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-\left(-2\sqrt{10}\right)^{2}}
Ríomh cumhacht 3 de 2 agus faigh 9.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-\left(-2\right)^{2}\left(\sqrt{10}\right)^{2}}
Fairsingigh \left(-2\sqrt{10}\right)^{2}
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-4\left(\sqrt{10}\right)^{2}}
Ríomh cumhacht -2 de 2 agus faigh 4.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-4\times 10}
Is é 10 uimhir chearnach \sqrt{10}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-40}
Méadaigh 4 agus 10 chun 40 a fháil.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{-31}
Dealaigh 40 ó 9 chun -31 a fháil.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\left(-2\sqrt{2}\left(3+2\sqrt{10}\right)\right)
Roinn 62\sqrt{2}\left(3+2\sqrt{10}\right) faoi -31 chun -2\sqrt{2}\left(3+2\sqrt{10}\right) a fháil.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Tá 2\sqrt{2}\left(3+2\sqrt{10}\right) urchomhairleach le -2\sqrt{2}\left(3+2\sqrt{10}\right).
\frac{62\sqrt{10}\sqrt{2}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Cuir an t-airí dáileacháin i bhfeidhm trí gach téarma de 31\sqrt{2}+31\sqrt{5} a iolrú faoi gach téarma de 2\sqrt{10}+3.
\frac{62\sqrt{2}\sqrt{5}\sqrt{2}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Fachtóirigh 10=2\times 5. Athscríobh fréamh cearnach an toraidh \sqrt{2\times 5} mar thoradh na bhfréamhacha cearnacha \sqrt{2}\sqrt{5}.
\frac{62\times 2\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Méadaigh \sqrt{2} agus \sqrt{2} chun 2 a fháil.
\frac{124\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Méadaigh 62 agus 2 chun 124 a fháil.
\frac{124\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{5}\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Fachtóirigh 10=5\times 2. Athscríobh fréamh cearnach an toraidh \sqrt{5\times 2} mar thoradh na bhfréamhacha cearnacha \sqrt{5}\sqrt{2}.
\frac{124\sqrt{5}+93\sqrt{2}+62\times 5\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Méadaigh \sqrt{5} agus \sqrt{5} chun 5 a fháil.
\frac{124\sqrt{5}+93\sqrt{2}+310\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Méadaigh 62 agus 5 chun 310 a fháil.
\frac{124\sqrt{5}+403\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Comhcheangail 93\sqrt{2} agus 310\sqrt{2} chun 403\sqrt{2} a fháil.
\frac{217\sqrt{5}+403\sqrt{2}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Comhcheangail 124\sqrt{5} agus 93\sqrt{5} chun 217\sqrt{5} a fháil.
7\sqrt{5}+13\sqrt{2}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Roinn 217\sqrt{5}+403\sqrt{2} faoi 31 chun 7\sqrt{5}+13\sqrt{2} a fháil.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\sqrt{10}\sqrt{2}
Úsáid an t-airí dáileach chun 2\sqrt{2} a mhéadú faoi 3+2\sqrt{10}.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\sqrt{2}\sqrt{5}\sqrt{2}
Fachtóirigh 10=2\times 5. Athscríobh fréamh cearnach an toraidh \sqrt{2\times 5} mar thoradh na bhfréamhacha cearnacha \sqrt{2}\sqrt{5}.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\times 2\sqrt{5}
Méadaigh \sqrt{2} agus \sqrt{2} chun 2 a fháil.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+8\sqrt{5}
Méadaigh 4 agus 2 chun 8 a fháil.
7\sqrt{5}+19\sqrt{2}+8\sqrt{5}
Comhcheangail 13\sqrt{2} agus 6\sqrt{2} chun 19\sqrt{2} a fháil.
15\sqrt{5}+19\sqrt{2}
Comhcheangail 7\sqrt{5} agus 8\sqrt{5} chun 15\sqrt{5} a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}