Luacháil
\frac{\left(x-3\right)\left(x-1\right)}{\left(x+1\right)\left(x+4\right)}
Fairsingigh
\frac{x^{2}-4x+3}{\left(x+1\right)\left(x+4\right)}
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{3x^{2}-1}{x^{2}+5x+4}-\frac{2x}{x+1}+\frac{4}{x+4}
Dealaigh 5 ó 4 chun -1 a fháil.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x}{x+1}+\frac{4}{x+4}
Fachtóirigh x^{2}+5x+4.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+1\right)\left(x+4\right) agus x+1 ná \left(x+1\right)\left(x+4\right). Méadaigh \frac{2x}{x+1} faoi \frac{x+4}{x+4}.
\frac{3x^{2}-1-2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Tá an t-ainmneoir céanna ag \frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)} agus \frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{3x^{2}-1-2x^{2}-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Déan iolrúcháin in 3x^{2}-1-2x\left(x+4\right).
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Cumaisc téarmaí comhchosúla in: 3x^{2}-1-2x^{2}-8x.
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+1\right)\left(x+4\right) agus x+4 ná \left(x+1\right)\left(x+4\right). Méadaigh \frac{4}{x+4} faoi \frac{x+1}{x+1}.
\frac{x^{2}-1-8x+4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Tá an t-ainmneoir céanna ag \frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)} agus \frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{2}-1-8x+4x+4}{\left(x+1\right)\left(x+4\right)}
Déan iolrúcháin in x^{2}-1-8x+4\left(x+1\right).
\frac{x^{2}+3-4x}{\left(x+1\right)\left(x+4\right)}
Cumaisc téarmaí comhchosúla in: x^{2}-1-8x+4x+4.
\frac{x^{2}+3-4x}{x^{2}+5x+4}
Fairsingigh \left(x+1\right)\left(x+4\right)
\frac{3x^{2}-1}{x^{2}+5x+4}-\frac{2x}{x+1}+\frac{4}{x+4}
Dealaigh 5 ó 4 chun -1 a fháil.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x}{x+1}+\frac{4}{x+4}
Fachtóirigh x^{2}+5x+4.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+1\right)\left(x+4\right) agus x+1 ná \left(x+1\right)\left(x+4\right). Méadaigh \frac{2x}{x+1} faoi \frac{x+4}{x+4}.
\frac{3x^{2}-1-2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Tá an t-ainmneoir céanna ag \frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)} agus \frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{3x^{2}-1-2x^{2}-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Déan iolrúcháin in 3x^{2}-1-2x\left(x+4\right).
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Cumaisc téarmaí comhchosúla in: 3x^{2}-1-2x^{2}-8x.
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+1\right)\left(x+4\right) agus x+4 ná \left(x+1\right)\left(x+4\right). Méadaigh \frac{4}{x+4} faoi \frac{x+1}{x+1}.
\frac{x^{2}-1-8x+4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Tá an t-ainmneoir céanna ag \frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)} agus \frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{2}-1-8x+4x+4}{\left(x+1\right)\left(x+4\right)}
Déan iolrúcháin in x^{2}-1-8x+4\left(x+1\right).
\frac{x^{2}+3-4x}{\left(x+1\right)\left(x+4\right)}
Cumaisc téarmaí comhchosúla in: x^{2}-1-8x+4x+4.
\frac{x^{2}+3-4x}{x^{2}+5x+4}
Fairsingigh \left(x+1\right)\left(x+4\right)
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}