Luacháil
\frac{3\left(-x^{4}+x-2\right)}{2\left(x-2\right)x^{4}}
Fairsingigh
-\frac{3\left(x^{4}-x+2\right)}{2\left(x-2\right)x^{4}}
Graf
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
\frac { 3 } { 2 x ^ { 4 } } - \frac { 1 } { x + 2 } - \frac { x + 10 } { 2 x ^ { 2 } - 8 } =
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{3\left(x+2\right)}{2\left(x+2\right)x^{4}}-\frac{2x^{4}}{2\left(x+2\right)x^{4}}-\frac{x+10}{2x^{2}-8}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 2x^{4} agus x+2 ná 2\left(x+2\right)x^{4}. Méadaigh \frac{3}{2x^{4}} faoi \frac{x+2}{x+2}. Méadaigh \frac{1}{x+2} faoi \frac{2x^{4}}{2x^{4}}.
\frac{3\left(x+2\right)-2x^{4}}{2\left(x+2\right)x^{4}}-\frac{x+10}{2x^{2}-8}
Tá an t-ainmneoir céanna ag \frac{3\left(x+2\right)}{2\left(x+2\right)x^{4}} agus \frac{2x^{4}}{2\left(x+2\right)x^{4}} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{3x+6-2x^{4}}{2\left(x+2\right)x^{4}}-\frac{x+10}{2x^{2}-8}
Déan iolrúcháin in 3\left(x+2\right)-2x^{4}.
\frac{3x+6-2x^{4}}{2\left(x+2\right)x^{4}}-\frac{x+10}{2\left(x-2\right)\left(x+2\right)}
Fachtóirigh 2x^{2}-8.
\frac{\left(3x+6-2x^{4}\right)\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)x^{4}}-\frac{\left(x+10\right)x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 2\left(x+2\right)x^{4} agus 2\left(x-2\right)\left(x+2\right) ná 2\left(x-2\right)\left(x+2\right)x^{4}. Méadaigh \frac{3x+6-2x^{4}}{2\left(x+2\right)x^{4}} faoi \frac{x-2}{x-2}. Méadaigh \frac{x+10}{2\left(x-2\right)\left(x+2\right)} faoi \frac{x^{4}}{x^{4}}.
\frac{\left(3x+6-2x^{4}\right)\left(x-2\right)-\left(x+10\right)x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}
Tá an t-ainmneoir céanna ag \frac{\left(3x+6-2x^{4}\right)\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)x^{4}} agus \frac{\left(x+10\right)x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{3x^{2}-6x+6x-12-2x^{5}+4x^{4}-x^{5}-10x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}
Déan iolrúcháin in \left(3x+6-2x^{4}\right)\left(x-2\right)-\left(x+10\right)x^{4}.
\frac{3x^{2}-12-3x^{5}-6x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}
Cumaisc téarmaí comhchosúla in: 3x^{2}-6x+6x-12-2x^{5}+4x^{4}-x^{5}-10x^{4}.
\frac{3\left(x+2\right)\left(-x^{4}+x-2\right)}{2\left(x-2\right)\left(x+2\right)x^{4}}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{3x^{2}-12-3x^{5}-6x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}.
\frac{3\left(-x^{4}+x-2\right)}{2\left(x-2\right)x^{4}}
Cealaigh x+2 mar uimhreoir agus ainmneoir.
\frac{3\left(-x^{4}+x-2\right)}{2x^{5}-4x^{4}}
Fairsingigh 2\left(x-2\right)x^{4}
\frac{-3x^{4}+3x-6}{2x^{5}-4x^{4}}
Úsáid an t-airí dáileach chun 3 a mhéadú faoi -x^{4}+x-2.
\frac{3\left(x+2\right)}{2\left(x+2\right)x^{4}}-\frac{2x^{4}}{2\left(x+2\right)x^{4}}-\frac{x+10}{2x^{2}-8}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 2x^{4} agus x+2 ná 2\left(x+2\right)x^{4}. Méadaigh \frac{3}{2x^{4}} faoi \frac{x+2}{x+2}. Méadaigh \frac{1}{x+2} faoi \frac{2x^{4}}{2x^{4}}.
\frac{3\left(x+2\right)-2x^{4}}{2\left(x+2\right)x^{4}}-\frac{x+10}{2x^{2}-8}
Tá an t-ainmneoir céanna ag \frac{3\left(x+2\right)}{2\left(x+2\right)x^{4}} agus \frac{2x^{4}}{2\left(x+2\right)x^{4}} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{3x+6-2x^{4}}{2\left(x+2\right)x^{4}}-\frac{x+10}{2x^{2}-8}
Déan iolrúcháin in 3\left(x+2\right)-2x^{4}.
\frac{3x+6-2x^{4}}{2\left(x+2\right)x^{4}}-\frac{x+10}{2\left(x-2\right)\left(x+2\right)}
Fachtóirigh 2x^{2}-8.
\frac{\left(3x+6-2x^{4}\right)\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)x^{4}}-\frac{\left(x+10\right)x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 2\left(x+2\right)x^{4} agus 2\left(x-2\right)\left(x+2\right) ná 2\left(x-2\right)\left(x+2\right)x^{4}. Méadaigh \frac{3x+6-2x^{4}}{2\left(x+2\right)x^{4}} faoi \frac{x-2}{x-2}. Méadaigh \frac{x+10}{2\left(x-2\right)\left(x+2\right)} faoi \frac{x^{4}}{x^{4}}.
\frac{\left(3x+6-2x^{4}\right)\left(x-2\right)-\left(x+10\right)x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}
Tá an t-ainmneoir céanna ag \frac{\left(3x+6-2x^{4}\right)\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)x^{4}} agus \frac{\left(x+10\right)x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{3x^{2}-6x+6x-12-2x^{5}+4x^{4}-x^{5}-10x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}
Déan iolrúcháin in \left(3x+6-2x^{4}\right)\left(x-2\right)-\left(x+10\right)x^{4}.
\frac{3x^{2}-12-3x^{5}-6x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}
Cumaisc téarmaí comhchosúla in: 3x^{2}-6x+6x-12-2x^{5}+4x^{4}-x^{5}-10x^{4}.
\frac{3\left(x+2\right)\left(-x^{4}+x-2\right)}{2\left(x-2\right)\left(x+2\right)x^{4}}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{3x^{2}-12-3x^{5}-6x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}.
\frac{3\left(-x^{4}+x-2\right)}{2\left(x-2\right)x^{4}}
Cealaigh x+2 mar uimhreoir agus ainmneoir.
\frac{3\left(-x^{4}+x-2\right)}{2x^{5}-4x^{4}}
Fairsingigh 2\left(x-2\right)x^{4}
\frac{-3x^{4}+3x-6}{2x^{5}-4x^{4}}
Úsáid an t-airí dáileach chun 3 a mhéadú faoi -x^{4}+x-2.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}